Fixed Point Results for --Contractions on Gauge Spaces and Applications

We extend the concept of α-ψ-contractive mappings introduced recently by Samet et al. (2012) to the setting of gauge spaces. New fixed point results are established on such spaces, and some applications to nonlinear integral equations on the half-line are presented.

[1]  Adrian Petruşel,et al.  Fixed point theorems in ordered L-spaces , 2005 .

[2]  C. Vetro,et al.  Some new fixed point results in non-Archimedean fuzzy metric spaces , 2013 .

[3]  C. Vetro,et al.  Fixed Points for Weak $\alpha $-$\psi $-Contractions in Partial Metric Spaces , 2013 .

[4]  J. Harjani,et al.  Fixed point theorems for weakly contractive mappings in partially ordered sets , 2009 .

[5]  C. Vetro,et al.  Fixed point theorems for twisted (α,β)-ψ-contractive type mappings and applications , 2013 .

[6]  N. Shahzad,et al.  Fixed points of generalized $$\alpha $$-$$\psi $$-contractions , 2014 .

[7]  Bessem Samet,et al.  Fixed point theorems for α–ψ-contractive type mappings , 2012 .

[8]  Naseer Shahzad,et al.  On fixed points of α-ψ-contractive multifunctions , 2012 .

[9]  Bessem Samet,et al.  Generalized - Contractive Type Mappings and Related Fixed Point Theorems with Applications , 2012 .

[10]  William A. Kirk,et al.  FIXED POINTS FOR MAPPINGS SATISFYING CYCLICAL CONTRACTIVE CONDITIONS , 2008 .

[11]  Ravi P. Agarwal,et al.  Generalized contractions in partially ordered metric spaces , 2008 .

[12]  N. Shahzad,et al.  Fixed points of generalized α-ψ-contractions , 2014 .

[13]  M. Edelstein,et al.  An extension of Banach’s contraction principle , 1961 .

[14]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[15]  V. Lakshmikantham,et al.  Fixed point theorems in partially ordered metric spaces and applications , 2006 .

[16]  Juan J. Nieto,et al.  Existence and Uniqueness of Fixed Point in Partially Ordered Sets and Applications to Ordinary Differential Equations , 2007 .

[17]  A. Ran,et al.  A fixed point theorem in partially ordered sets and some applications to matrix equations , 2003 .