Room-Temperature Low-Threshold Lasing from Monolithically Integrated Nanostructured Porous Silicon Hybrid Microcavities

Silicon photonics would strongly benefit from monolithically integrated low-threshold silicon-based laser operating at room temperature, representing today the main challenge toward low-cost and power-efficient electronic–photonic integrated circuits. Here we demonstrate low-threshold lasing from fully transparent nanostructured porous silicon (PSi) monolithic microcavities (MCs) infiltrated with a polyfluorene derivative, namely, poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The PFO-infiltrated PSiMCs support single-mode blue lasing at the resonance wavelength of 466 nm, with a line width of ∼1.3 nm and lasing threshold of 5 nJ (15 μJ/cm2), a value that is at the state of the art of PFO lasers. Furthermore, time-resolved photoluminescence shows a significant shortening (∼57%) of PFO emission lifetime in the PSiMCs, with respect to nonresonant PSi reference structures, confirming a dramatic variation of the radiative decay rate due to a Purcell effect. Our results, given also that blue lasing is a worst case for silicon photonics, are highly appealing for the development of low-cost, low-threshold silicon-based lasers with wavelengths tunable from visible to the near-infrared region by simple infiltration of suitable emitting polymers in monolithically integrated nanostructured PSiMCs.

[1]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.

[2]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[3]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[4]  Gunnar Björk,et al.  Micro-cavity semiconductor lasers with controlled spontaneous emission , 1992 .

[5]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[6]  Alan J. Heeger,et al.  The exciton binding energy in luminescent conjugated polymers , 1996 .

[7]  R. H. Friend,et al.  Lasing from conjugated-polymer microcavities , 1996, Nature.

[8]  Lorenzo Pavesi,et al.  Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry - Pérot filters , 1997 .

[9]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[10]  Andreas Janshoff,et al.  Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing , 1998 .

[11]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[12]  Jean-Luc Brédas,et al.  Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated Oligomers and Polymers: A Quantum-Chemical Characterization , 1998 .

[13]  Lorenzo Pavesi,et al.  All-porous silicon-coupled microcavities: Experiment versus theory , 1998 .

[14]  L. Canham,et al.  Gaining light from silicon , 2000, Nature.

[15]  David Beljonne,et al.  Interchain Interactions in Organic π‐Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport , 2001 .

[16]  H. Föll,et al.  Formation and application of porous silicon , 2002 .

[17]  Piers Andrew,et al.  Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One‐ and Two‐Dimensional Distributed Feedback , 2004 .

[18]  S. H. A. Chen,et al.  Crystalline Forms and Emission Behavior of Poly(9,9-di-n-octyl-2,7-fluorene) , 2005 .

[19]  David Beljonne,et al.  Solid-state optical properties of linear polyconjugated molecules: pi-stack contra herringbone. , 2005, The Journal of chemical physics.

[20]  Guglielmo Lanzani,et al.  Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors , 2006 .

[21]  David G Lidzey,et al.  Spontaneous Emission Control in Micropillar Cavities Containing a Fluorescent Molecular Dye , 2006 .

[22]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[23]  Donal D. C. Bradley,et al.  Optical gain characteristics of β-phase poly(9,9-dioctylfluorene) , 2007 .

[24]  M. Sailor,et al.  Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure , 2007 .

[25]  G A Turnbull,et al.  Organic semiconductor lasers. , 2007, Chemical reviews.

[26]  D. O’Carroll,et al.  Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. , 2007, Nature nanotechnology.

[27]  P. Stavrinou,et al.  The change in refractive index of poly(9,9-dioctylfluorene) due to the adoption of the β-phase chain conformation , 2007 .

[28]  J. Sipe,et al.  Nanoscale porous silicon waveguide for label-free DNA sensing. , 2008, Biosensors & bioelectronics.

[29]  F. Cacialli,et al.  Control of Rapid Formation of Interchain Excited States in Sugar‐Threaded Supramolecular Wires , 2008 .

[30]  Nicolas H Voelcker,et al.  Porous silicon biosensors on the advance. , 2009, Trends in biotechnology.

[31]  Michael J Sailor,et al.  Cooperative Nanoparticles for Tumor Detection and Photothermally Triggered Drug Delivery , 2009, Advanced materials.

[32]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[33]  F. Spano The spectral signatures of Frenkel polarons in H- and J-aggregates. , 2010, Accounts of chemical research.

[34]  Charles C. Chaffin,et al.  Internally Referenced Remote Sensors for HF and Cl2 Using Reactive Porous Silicon Photonic Crystals , 2011 .

[35]  A microcavity based on a porous silicon multilayer , 2011 .

[36]  M. Sailor Porous Silicon in Practice: Preparation, Characterization and Applications , 2012 .

[37]  Topological Control of Porous Silicon Photonic Crystals by Microcontact Printing , 2013 .

[38]  Stephen B. Howell,et al.  In Vivo Time-gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles , 2013, Nature Communications.

[39]  F. Cacialli,et al.  Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes , 2013 .

[40]  N. Voelcker,et al.  Lanthanide luminescence enhancements in porous silicon resonant microcavities. , 2014, ACS applied materials & interfaces.

[41]  T. Krauss,et al.  Silicon nanostructures for photonics and photovoltaics. , 2014, Nature nanotechnology.

[42]  Simulation and fabrication study of porous silicon photonic crystal , 2014 .

[43]  Kent D. Choquette,et al.  Transfer-Printing of Tunable Porous Silicon Microcavities with Embedded Emitters , 2014 .

[44]  F. Cacialli,et al.  Hybrid-Organic Photonic Structures for Light Emission Modification , 2015 .

[45]  Stefano Mariani,et al.  10 000-Fold Improvement in Protein Detection Using Nanostructured Porous Silicon Interferometric Aptasensors , 2016 .

[46]  Gengfeng Zheng,et al.  Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system , 2016 .

[47]  John A Rogers,et al.  Porous Silicon Gradient Refractive Index Micro-Optics. , 2016, Nano letters.

[48]  Neil A. Krueger,et al.  Tunable Visibly Transparent Optics Derived from Porous Silicon , 2017 .

[49]  Neil A. Krueger,et al.  Resonant Mode Engineering of Photonic Crystal Sensors Clad with Ultralow Refractive Index Porous Silicon Dioxide , 2017 .