On new computational local orders of convergence

Abstract Four new variants of the Computational Order of Convergence (COC) of a one-point iterative method with memory for solving nonlinear equations are presented. Furthermore, the way to approximate the new variants to the local order of convergence is analyzed. Three of the new definitions given here do not involve the unknown root. Numerical experiments using adaptive arithmetic with multiple precision and a stopping criteria are implemented without using any known root.

[1]  Miodrag S. Petkovic,et al.  Remarks on "On a General Class of Multipoint Root-Finding Methods of High Computational Efficiency" , 2011, SIAM J. Numer. Anal..

[2]  Miquel Grau-Sánchez,et al.  A technique to choose the most efficient method between secant method and some variants , 2012, Appl. Math. Comput..

[3]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[4]  Miquel Grau-Sánchez,et al.  A variant of Cauchy's method with accelerated fifth-order convergence , 2004, Appl. Math. Lett..

[5]  Leonard Tornheim,et al.  Convergence of Multipoint Iterative Methods , 1964, JACM.

[6]  Ernst Schröder,et al.  Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .

[7]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[8]  Sunethra Weerakoon,et al.  A variant of Newton's method with accelerated third-order convergence , 2000, Appl. Math. Lett..

[9]  Miquel Grau-Sánchez,et al.  On some computational orders of convergence , 2010, Appl. Math. Lett..

[10]  Miquel Grau-Sánchez,et al.  Improvements of the efficiency of some three-step iterative like-Newton methods , 2007, Numerische Mathematik.

[11]  Miodrag S. Petkovic,et al.  Three-point methods with and without memory for solving nonlinear equations , 2012, Appl. Math. Comput..

[12]  D. D. Wall The order of an iteration formula , 1956 .

[13]  Muhammad Aslam Noor,et al.  Unifying fourth-order family of iterative methods , 2011, Appl. Math. Lett..

[14]  José Luis Díaz-Barrero,et al.  An improvement of the Euler-Chebyshev iterative method , 2006 .

[15]  Miodrag S. Petkovic,et al.  On a General Class of Multipoint Root-Finding Methods of High Computational Efficiency , 2010, SIAM J. Numer. Anal..