Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant

The dynamics of a direct-heated closed Brayton power conversion system (PCS) with supercritical carbon-dioxide as the working-fluid (sCO2 PCS) is investigated in this study. Simulations of the dynamic response of the sCO2 PCS to changes in ambient air temperatures and solar energy input from parabolic trough collectors on representative days for summer and winter are presented. A control-oriented model describing sCO2 PCS dynamic behaviour has been constructed using mathematical models of heat-exchangers and turbomachinery. Changes in solar heat input causes movement of carbon-dioxide (CO2) mass between the hot and cold-sides of the PCS. Movement of mass results in variations in CO2 mass-flow rate, pressures, temperatures, and net-power output. The sCO2 PCS maintains a relatively stable net-power output when operating under conditions representative of an average day in summer with capped heat input. Turbine inlet temperatures rise well above nominal values due to reductions in CO2 mass-flow rates. A significant power output penalty is incurred on a winter day due to conditions at the compressor inlet becoming subcritical. The simulations highlight the potential for utilising CO2 charge manipulation for sCO2 PCS mass-flow rate control in summer, and the need for control of compressor inlet conditions in winter, for sustained fully supercritical operation of the PCS within allowable limits.

[1]  Danièle Revel,et al.  Renewable energy technologies: cost analysis series , 2012 .

[2]  Y. Nomoto,et al.  Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor , 2008 .

[3]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[4]  David Japikse,et al.  Introduction to Turbomachinery , 1994 .

[5]  James J. Sienicki,et al.  Control system options and strategies for supercritical CO2 cycles. , 2009 .

[6]  Andrew G. Alleyne,et al.  Control-oriented modeling and analysis of automotive transcritical AC system dynamics , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[7]  Andrew Beath,et al.  Industrial energy usage in Australia and the potential for implementation of solar thermal heat and power , 2012 .

[8]  G. Rochau,et al.  Break-even Power Transients for two Simple Recuperated S-CO2 Brayton Cycle Test Configurations. , 2011 .

[9]  Mehmet Mercangöz,et al.  Electrothermal energy storage with transcritical CO2 cycles , 2012 .

[10]  Yang Chen,et al.  Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption , 2005 .

[11]  Jesús Benajes,et al.  Modelling of supercharger turbines in internal-combustion engines , 1996 .

[12]  Craig Turchi,et al.  Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint , 2011 .

[13]  Hiroshi Yamaguchi,et al.  Solar energy powered Rankine cycle using supercritical CO2 , 2006 .

[14]  N. Galanis,et al.  Analysis of a carbon dioxide transcritical power cycle using a low temperature source , 2009 .

[15]  Chris Manzie,et al.  Extremum-seeking control of a supercritical carbon-dioxide closed Brayton cycle in a direct-heated solar thermal power plant , 2013 .

[16]  Gerhard Schmitz,et al.  Modelling and transient simulation of CO2-refrigeration systems with Modelica , 2004 .

[17]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[18]  E. Schlunder,et al.  VDI Heat Atlas , 1993 .

[19]  Ž. Knez,et al.  Industrial applications of supercritical fluids: A review , 2014 .

[20]  Nathan Carstens Control strategies for supercritical carbon dioxide power conversion systems , 2007 .

[21]  Pierce E. C. Gordon,et al.  Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities , 2011 .

[22]  Yunus A. Cengel,et al.  Fundamentals of thermal-fluid sciences , 2001 .

[23]  Rajinesh Singh,et al.  Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant , 2013 .

[24]  Vaclav Dostal,et al.  A supercritical carbon dioxide cycle for next generation nuclear reactors , 2004 .

[25]  Rui Long,et al.  Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery , 2014 .

[26]  Svend Tollak Munkejord,et al.  Heat Transfer and Pressure Drop for Flow of Supercritical and Subcritical CO2 in Microchannel Tubes , 2000 .

[27]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[28]  G. Delussu,et al.  A qualitative thermo-fluid-dynamic analysis of a CO2 solar pipe receiver , 2012 .

[29]  Daniel Favrat,et al.  Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources , 2012 .

[30]  S. L. Dixon,et al.  Fluid mechanics, thermodynamics of turbomachinery , 1966 .