On the number of vertices of each rank in phylogenetic trees and their generalizations

We find surprisingly simple formulas for the limiting probability that the rank of a randomly selected vertex in a randomly selected phylogenetic tree or generalized phylogenetic tree is a given integer.

[1]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[2]  P. Flajolet,et al.  Isomorphism and Symmetries in Random Phylogenetic Trees , 2009, Journal of Applied Probability.

[3]  Svante Janson,et al.  Protected nodes and fringe subtrees in some random trees , 2013, 1310.0665.

[4]  S. Janson,et al.  Limit Laws for Functions of Fringe trees for Binary Search Trees and Recursive Trees , 2014, 1406.6883.

[5]  On a random search tree: asymptotic enumeration of vertices by distance from leaves , 2014, Advances in Applied Probability.

[6]  Luc Devroye,et al.  A note on the height of binary search trees , 1986, JACM.

[7]  Miklós Bóna,et al.  k-Protected vertices in binary search trees , 2014, Adv. Appl. Math..

[8]  Svante Janson,et al.  Asymptotic distribution of two-protected nodes in ternary search trees , 2014 .

[9]  Boris G. Pittel,et al.  Note on the Heights of Random Recursive Trees and Random m-ary Search Trees , 1994, Random Struct. Algorithms.

[10]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[11]  Gi-Sang Cheon,et al.  Protected points in ordered trees , 2008, Appl. Math. Lett..

[12]  Svante Janson,et al.  Limit laws for functions of fringe trees for binary search trees and random recursive trees , 2015 .

[13]  V. F. Kolchin Moment of degeneration of a branching process and height of a random tree , 1978 .

[14]  Mark Daniel Ward,et al.  Asymptotic Properties of Protected Nodes in Random Recursive Trees , 2015, Journal of Applied Probability.

[15]  B. Pittel On growing random binary trees , 1984 .

[16]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[17]  Hosam M. Mahmoud,et al.  Asymptotic distribution of two-protected nodes in random binary search trees , 2012, Appl. Math. Lett..

[18]  Helmut Prodinger,et al.  Notes on protected nodes in digital search trees , 2012, Appl. Math. Lett..