Exciton Diffusion and Halo Effects in Monolayer Semiconductors.

We directly monitor exciton propagation in freestanding and SiO_{2}-supported WS_{2} monolayers through spatially and time-resolved microphotoluminescence under ambient conditions. We find a highly nonlinear behavior with characteristic, qualitative changes in the spatial profiles of the exciton emission and an effective diffusion coefficient increasing from 0.3 to more than 30  cm^{2}/s, depending on the injected exciton density. Solving the diffusion equation while accounting for Auger recombination allows us to identify and quantitatively understand the main origin of the increase in the observed diffusion coefficient. At elevated excitation densities, the initial Gaussian distribution of the excitons evolves into long-lived halo shapes with μm-scale diameter, indicating additional memory effects in the exciton dynamics.

[1]  D. Snoke,et al.  Long-range transport in excitonic dark states in coupled quantum wells , 2002, Nature.

[2]  Á. Rubio,et al.  Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane , 2011, 1104.3346.

[3]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[4]  G. Eda,et al.  Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation , 2014, 1405.5781.

[5]  C. Robert,et al.  Enabling valley selective exciton scattering in monolayer WSe2 through upconversion , 2017, Nature Communications.

[6]  T. Heinz,et al.  Experimental Evidence for Dark Excitons in Monolayer WSe_{2}. , 2015, Physical review letters.

[7]  C. Robert,et al.  Spin-orbit engineering in transition metal dichalcogenide alloy monolayers , 2015, Nature Communications.

[8]  A. C. H. Rowe,et al.  Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure , 2018, 1802.09201.

[9]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Claus Klingshirn,et al.  Semiconductor Optics , 1995 .

[11]  Kenji Watanabe,et al.  Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides , 2017 .

[12]  Libai Huang,et al.  Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors. , 2017, The journal of physical chemistry letters.

[13]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[14]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[15]  F. S. Prout Philosophical Transactions of the Royal Society of London , 2009, The London Medical Journal.

[16]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[17]  A. Gossard,et al.  Macroscopically ordered state in an exciton system , 2002, Nature.

[18]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[19]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[20]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[21]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[22]  Vladimir Bulović,et al.  Visualization of exciton transport in ordered and disordered molecular solids , 2014, Nature Communications.

[23]  M. Mootz,et al.  Quantum droplets of electrons and holes , 2014, Nature.

[24]  A Gholinia,et al.  WSe₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. , 2015, Nano letters.

[25]  R. Bratschitsch,et al.  Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. , 2015, Nature materials.

[26]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[27]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[28]  Andrew G. Glen,et al.  APPL , 2001 .

[29]  J. Wolfe,et al.  Two-body decay of thermalized excitons in Cu 2 O , 2000 .

[30]  S. Simon,et al.  Charge separation of dense two-dimensional electron-hole gases: mechanism for exciton ring pattern formation. , 2004, Physical review letters.

[31]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[32]  Bulatov,et al.  Phonon-driven carrier transport caused by short excitation pulses in semiconductors. , 1992, Physical review. B, Condensed matter.

[33]  Chem. , 2020, Catalysis from A to Z.

[34]  S. Maruyama,et al.  Exciton diffusion in air-suspended single-walled carbon nanotubes. , 2010, Physical review letters.

[35]  Timothy C. Berkelbach,et al.  Excitons in atomically thin transition-metal dichalcogenides , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[36]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[37]  C. Jeffries,et al.  Electron-hole droplets in semiconductors , 1983 .

[38]  A. Chernikov,et al.  Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. , 2017, Nano letters.

[39]  S. Scheel,et al.  Giant Rydberg excitons in the copper oxide Cu2O , 2014, Nature.

[40]  Ying Wang,et al.  Magnetic brightening and control of dark excitons in monolayer WSe2. , 2016, Nature nanotechnology.

[41]  T. Heinz,et al.  The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS2 after Ultrafast Excitation. , 2017, Nano letters.

[42]  T. Heinz,et al.  Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. , 2014, Nano letters.

[43]  29 , 2019, Critical Care Medicine.

[44]  E. Ivchenko Optical Spectroscopy of Semiconductor Nanostructures , 2005 .

[45]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[46]  S. Tikhodeev,et al.  Exciton Transport in Cu 2 O: Phonon Wind versus Superfluidity , 1998 .

[47]  A. Gossard,et al.  Spin currents in a coherent exciton gas. , 2013, Physical review letters.

[48]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[49]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[50]  M. Koperski,et al.  Excitonic resonances in thin films of WSe2: from monolayer to bulk material. , 2015, Nanoscale.

[51]  J. Frenkel On the Transformation of Light into Heat in Solids. II , 1931 .

[52]  D. He,et al.  Exciton-exciton annihilation in MoSe2 monolayers , 2013, 1311.1079.

[53]  Q. Cui,et al.  Exciton formation in monolayer transition metal dichalcogenides. , 2016, Nanoscale.

[54]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[55]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[56]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[57]  Takahiro Yamamoto,et al.  Valley photothermoelectric effects in transition-metal dichalcogenides , 2014 .

[58]  H. Ohkita,et al.  Exciton Diffusion in Conjugated Polymers: From Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency. , 2015, The journal of physical chemistry letters.

[59]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[60]  Klein,et al.  Picosecond imaging of photoexcited carriers in quantum wells: Anomalous lateral confinement at high densities. , 1988, Physical review. B, Condensed matter.

[61]  Y. Levinson,et al.  Photoluminescence ring formation in coupled quantum wells: excitonic versus ambipolar diffusion. , 2008, Physical review letters.

[62]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[63]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[64]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[65]  J. Wolfe,et al.  The search for Bose–Einstein condensation of excitons in Cu2O: exciton-Auger recombination versus biexciton formation , 2014 .

[66]  Farhan Rana,et al.  Absorption of light by excitons and trions in monolayers of metal dichalcogenide Mo S 2 : Experiments and theory , 2014, 1402.0263.

[67]  Y. Iwasa,et al.  Exciton Hall effect in monolayer MoS2. , 2017, Nature materials.

[68]  Valley excitons in two-dimensional semiconductors , 2015, 1507.08103.

[69]  A. Forchel,et al.  Two‐dimensional exciton transport in GaAs/GaAlAs quantum wells , 1988 .

[70]  Michel Dyakonov,et al.  Possibility of Orienting Electron Spins with Current , 1971 .

[71]  Randall D. Kamien,et al.  Reviews of Modern Physics at 90 , 2019, Physics Today.

[72]  Thomas Hellman PHIL , 2018, Encantado.

[73]  T. Kaneko,et al.  Transport Dynamics of Neutral Excitons and Trions in Monolayer WS2. , 2016, ACS nano.

[74]  Y. Wang,et al.  Excitons in atomically thin 2D semiconductors and their applications , 2017 .

[75]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[76]  Yifei Yu,et al.  Limits of Exciton-Exciton Annihilation for Light Emission in Transition Metal Dichalcogenide Monolayers , 2015, 1512.00945.