Foliar fertilization of peach (Prunus persica (L.) Batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces

[1]  H. Goldbach,et al.  Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces--further evidence for a stomatal pathway. , 2008, Physiologia plantarum.

[2]  C. Jeffree,et al.  The Fine Structure of the Plant Cuticle , 2007 .

[3]  J. Abadía,et al.  Foliar Iron Fertilization of Peach (Prunus persica (L.) Batsch): Effects of Iron Compounds, Surfactants and Other Adjuvants , 2006, Plant and Soil.

[4]  C. Neinhuis,et al.  Structure-function relationships of the plant cuticle and cuticular waxes - a smart material? , 2006, Functional plant biology : FPB.

[5]  H. Goldbach,et al.  INVESTIGATIONS ON THE CONTRIBUTION OF THE STOMATAL PATHWAY TO FOLIAR UPTAKE , 2006 .

[6]  M. Knoche,et al.  Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways. , 2006, Journal of agricultural and food chemistry.

[7]  L. Schreiber,et al.  Rates of foliar penetration of chelated Fe(III): role of light, stomata, species, and leaf age. , 2006, Journal of agricultural and food chemistry.

[8]  J. Schönherr Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. , 2006, Journal of experimental botany.

[9]  G. Kerstiens Water transport in plant cuticles: an update. , 2006, Journal of experimental botany.

[10]  L. Schreiber Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities. , 2006, Journal of experimental botany.

[11]  Markus Riederer,et al.  Biology of the plant cuticle , 2006 .

[12]  G. Ebert,et al.  Foliar Iron Fertilization: A Critical Review , 2005 .

[13]  M. Riederer,et al.  Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: permeation of water and uncharged organic compounds. , 2005, Journal of experimental botany.

[14]  L. Schreiber,et al.  Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate. , 2005, Journal of agricultural and food chemistry.

[15]  G. Ebert,et al.  The use of microbial siderophores for foliar iron application studies , 2005, Plant and Soil.

[16]  M. Davies,et al.  Macro and microthermal analysis of plant wax/surfactant interactions: plasticizing effects of two alcohol ethoxylated surfactants on an isolated cuticular wax and leaf model , 2005 .

[17]  A. Heredia,et al.  Relative humidity and temperature modify the mechanical properties of isolated tomato fruit cuticles. , 2005, American journal of botany.

[18]  L. Schreiber,et al.  Size selectivity of aqueous pores in stomatous cuticles of Vicia faba leaves , 2005, Planta.

[19]  Zhiqian Liu Effects of surfactants on foliar uptake of herbicides - a complex scenario. , 2004, Colloids and surfaces. B, Biointerfaces.

[20]  J. Abadía,et al.  Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees , 2004, Plant and Soil.

[21]  J. Abadía,et al.  Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). , 2003, Journal of agricultural and food chemistry.

[22]  A. Heredia,et al.  Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. , 2003, Biochimica et biophysica acta.

[23]  J. Abadía,et al.  CORRECTION OF IRON CHLOROSIS BY FOLIAR SPRAYS , 2002 .

[24]  G. Noga,et al.  Studies on a new group of biodegradable surfactants for glyphosate. , 2002, Pest management science.

[25]  H. Tamura,et al.  Evidence for surfactant solubilization of plant epicuticular wax. , 2001, Journal of agricultural and food chemistry.

[26]  E. Igartua,et al.  Prognosis of iron chlorosis from the mineral composition of ¯owers in peach , 2000 .

[27]  N. Porter,et al.  Stability of DTPA and iron(III)-DTPA under laboratory ecotoxicological conditions , 1999 .

[28]  E. Domínguez,et al.  Water hydration in cutinized cell walls: a physico-chemical analysis. , 1999, Biochimica et biophysica acta.

[29]  J. Abadía,et al.  Iron deficiency in peach trees: effects on leaf chlorophyll and nutrient concentrations in flowers and leaves , 1998, Plant and Soil.

[30]  J. Abadía,et al.  Iron chlorosis paradox in fruit trees , 1998 .

[31]  A. Heredia,et al.  Water permeability of isolated cuticular membranes: a structural analysis. , 1995, Archives of biochemistry and biophysics.

[32]  A. Heredia,et al.  A study of the hydration process of isolated cuticular membranes. , 1995, The New phytologist.

[33]  H. Bienfait,et al.  Some properties of ferric citrate relevant to the iron nutrition of plants , 1992, Plant and Soil.

[34]  F. Morel,et al.  Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii , 1990 .

[35]  J. Abadía,et al.  Mineral composition of peach leaves affected by iron chlorosis , 1985 .

[36]  P. M. Neumann,et al.  The reduction by surfactants of leaf burn resulting from foliar sprays and a salt‐induced inhibition of the effect , 1975 .

[37]  Cuicui Wang,et al.  Foliar uptake of pesticides : Present status and future challenge , 2007 .

[38]  J. Lucena Synthetic Iron Chelates to Correct Iron Deficiency in Plants , 2006 .

[39]  M. Knoche,et al.  Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration , 2004, Planta.

[40]  M. N. Westwood Temperate Zone Pomology , 1978 .