Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells

[1]  W. Zuo,et al.  Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2 , 2020, American journal of respiratory and critical care medicine.

[2]  A. Venkatakrishnan,et al.  Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors , 2020, eLife.

[3]  Slobodan Paessler,et al.  Antiviral activities of type I interferons to SARS-CoV-2 infection , 2020, Antiviral Research.

[4]  Hans Clevers,et al.  SARS-CoV-2 productively infects human gut enterocytes , 2020, Science.

[5]  Dong Yang,et al.  Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19 , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[6]  Junki Maruyama,et al.  Potent Antiviral Activities of Type I Interferons to SARS-CoV-2 Infection , 2020, bioRxiv.

[7]  Roland Eils,et al.  SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells , 2020, The EMBO journal.

[8]  P. Vollmar,et al.  Virological assessment of hospitalized patients with COVID-2019 , 2020, Nature.

[9]  W. Ni,et al.  Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019 , 2020, Journal of Microbiology, Immunology and Infection.

[10]  Xiang Yao,et al.  Knowledge synthesis from 100 million biomedical documents augments the deep expression profiling of coronavirus receptors , 2020, bioRxiv.

[11]  Sunny H Wong,et al.  Covid‐19 and the digestive system , 2020, Journal of gastroenterology and hepatology.

[12]  R. Albrecht,et al.  SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems , 2020, bioRxiv.

[13]  W. Hugentobler,et al.  Seasonality of Respiratory Viral Infections. , 2020, Annual review of virology.

[14]  H. Shan,et al.  Prolonged presence of SARS-CoV-2 viral RNA in faecal samples , 2020, The Lancet Gastroenterology & Hepatology.

[15]  Huiying Liang,et al.  Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding , 2020, Nature Medicine.

[16]  R. Lu,et al.  Detection of SARS-CoV-2 in Different Types of Clinical Specimens. , 2020, JAMA.

[17]  Vineet D. Menachery,et al.  Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV , 2020, Journal of Virology.

[18]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[19]  Shinji Makino,et al.  Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient , 2020, bioRxiv.

[20]  Taiwen Li,et al.  High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa , 2020, International Journal of Oral Science.

[21]  Shuye Zhang,et al.  Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses , 2020, bioRxiv.

[22]  H. Shan,et al.  Evidence for Gastrointestinal Infection of SARS-CoV-2 , 2020, Gastroenterology.

[23]  Yu Chen,et al.  Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCoV, in the nasal tissue , 2020, medRxiv.

[24]  W. Zuo,et al.  Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov , 2020, bioRxiv.

[25]  Catharine I Paules,et al.  Coronavirus Infections-More Than Just the Common Cold. , 2020, JAMA.

[26]  Hongzhou Lu,et al.  Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle , 2020, Journal of medical virology.

[27]  T. Hielscher,et al.  Asymmetric distribution of TLR3 leads to a polarized immune response in human intestinal epithelial cells , 2019, Nature Microbiology.

[28]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[29]  P. Staeheli,et al.  Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin , 2019, Nature Immunology.

[30]  A. Vlasova,et al.  Emerging and re-emerging coronaviruses in pigs , 2019, Current Opinion in Virology.

[31]  Dianna Gellar single cell rna sequencing , 2019 .

[32]  Zhènglì Shí,et al.  Origin and evolution of pathogenic coronaviruses , 2018, Nature Reviews Microbiology.

[33]  K. Garcia,et al.  Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance , 2018, bioRxiv.

[34]  Z. Memish,et al.  Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus , 2017, Science Advances.

[35]  R. Rabin,et al.  Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut , 2017, Front. Immunol..

[36]  Jennifer Tetzlaff,et al.  Knowledge Synthesis , 2017, Encyclopedia of GIS.

[37]  M. Binder,et al.  Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF‐β dependent pro‐survival signaling , 2016, Cellular microbiology.

[38]  D. Graham,et al.  Replication of human noroviruses in stem cell–derived human enteroids , 2016, Science.

[39]  Leyi Wang,et al.  Animal Coronaviruses: A Brief Introduction , 2015, Animal Coronaviruses.

[40]  V. Lohmann,et al.  Ultrastructure of the replication sites of positive-strand RNA viruses , 2015, Virology.

[41]  M. Albert,et al.  Type I and Type III Interferons Drive Redundant Amplification Loops to Induce a Transcriptional Signature in Influenza-Infected Airway Epithelia , 2013, PLoS pathogens.

[42]  M. Hornef,et al.  IFN-λ determines the intestinal epithelial antiviral host defense , 2011, Proceedings of the National Academy of Sciences.

[43]  H. Hauser,et al.  Novel bioassays for mouse type I and type III interferons , 2009 .

[44]  John McLauchlan,et al.  Visualization of Double-Stranded RNA in Cells Supporting Hepatitis C Virus RNA Replication , 2007, Journal of Virology.

[45]  Krishna Shankara Narayanan,et al.  Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication , 2005, Journal of Virology.

[46]  J. Sung,et al.  Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection , 2003, Gastroenterology.