Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons

This work analyzes the effects of storage by fresh-freezing at −80°C on the histological, structural and biomechanical properties of the human posterior tibial tendon (PTT), used for ACL reconstruction. Twenty-two PTTs were harvested from eleven donors. For each donor one tendon was frozen at −80°C and thawed in physiological solution at 37°C, and the other was tested without freezing (control). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and biomechanical analysis were performed. We found the following mean changes in frozen-thawed tendons compared to controls: TEM showed an increase in the mean diameter of collagen fibrils and in fibril non-occupation mean ratio, while the mean number of fibrils decreased; DSC showed a decrease in mean denaturation temperature and denaturation enthalpy. Biomechanical analysis showed a decrease in ultimate load and ultimate stress, an increase in stiffness and a decrease in ultimate strain of tendons. In conclusion fresh-freezing brings about significant changes in the biomechanical and structural properties of the human PTT. A high variability exists in the biophysical properties of tendons among individuals and in the effects of storage on tendons. Therefore, when choosing an allograft tendon, particular care is needed to choose a biomechanically suitable graft.RésuméCe travail a pour but d’analyser les effets du stockage à −80°C sur le plan histologique, structurel et biomécanique d’un tendon le tibial ou jambier postérieur (PTT), utilisé pour la reconstruction des ligaments croisés antérieurs. 22 PTT ont été conservées provenant de 11 donneurs. Pour chaque donneur un tendon a été congelé à −80°C et l’autre, conservé dans une solution physiologique à 37°C. Ces tendons ont été testés. L’examen par microscope électronique (TEM), le scanner calorimétrique (DSC) et une analyse biomécanique ont été réalisés. Nous avons trouvé des changements dans les tendons conservés au froid en comparaison du groupe contrôle. Le TEM, examen au microscope électronique a montré une diminution du diamètre des fibres collagènes. L’analyse biomécanique a montré également une diminution de la résistance à la charge et au stress ainsi qu’une augmentation de la rigidité et une diminution des contraintes terminales au niveau du tendon. En conclusion: la congélation des tendons frais amène des modifications significatives des caractéristiques biomécaniques et structurelles du tendon PTT humain. Il existe une variation importante des propriétés biophysiques des tendons parmi les individus et du fait de leurs conservations. Pour cela, il est nécessaire lorsque l’on choisit un tendon et une allogreffe du tendon d’apporter dans le choix sur le plan biomécanique un soin particulier.

[1]  Charles H. Brown,et al.  Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. , 1999, The Journal of bone and joint surgery. American volume.

[2]  L. Nolte,et al.  Mechanical Tensile Properties of the Quadriceps Tendon and Patellar Ligament in Young Adults , 1999, The American journal of sports medicine.

[3]  I. S. Young,et al.  Mechanical properties of tendons: changes with sterilization and preservation. , 1996, Journal of biomechanical engineering.

[4]  C. A. Miles,et al.  Differential scanning calorimetric studies of superficial digital flexor tendon degeneration in the horse. , 1994, Equine veterinary journal.

[5]  R. Siebold,et al.  Primary ACL reconstruction with fresh-frozen patellar versus Achilles tendon allografts , 2003, Archives of Orthopaedic and Trauma Surgery.

[6]  D. Achet,et al.  Determination of the renaturation level in gelatin films , 1995 .

[7]  S. Woo,et al.  Tensile properties of the human femur-anterior cruciate ligament-tibia complex , 1991, The American journal of sports medicine.

[8]  G. Poehling,et al.  Arthroscopic reconstruction of the anterior cruciate ligament using allograft tendon. , 1988, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[9]  F. Noyes,et al.  The strength of the anterior cruciate ligament in humans and Rhesus monkeys. , 1976, The Journal of bone and joint surgery. American volume.

[10]  B. Cohn,et al.  The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. , 1991, The Journal of bone and joint surgery. American volume.

[11]  G. Drouin,et al.  Load elongation behavior of the canine anterior cruciate ligament. , 1980, Journal of biomechanical engineering.

[12]  J. Smith,et al.  Achilles tendon allograft reconstruction of the anterior cruciate ligament-deficient knee , 1993, The American journal of sports medicine.

[13]  K. Shino,et al.  Reconstruction of the anterior cruciate ligament using allogeneic tendon , 1990, The American journal of sports medicine.

[14]  D. Kuechle,et al.  Allograft anterior cruciate ligament reconstruction in patients over 40 years of age. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[15]  L. Monteleone,et al.  Biomechanics of anterior cruciate ligament reconstruction using twisted doubled hamstring tendons , 2002, International Orthopaedics.

[16]  M. Dillingham,et al.  Anterior Cruciate Ligament Reconstruction Using Cryopreserved Allografts , 2004, Clinical orthopaedics and related research.

[17]  K. Kaneda,et al.  Effects of complete stress‐shielding on the mechanical properties and histology of in situ frozen patellar tendon , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[18]  K. Kaneda,et al.  Effects of in situ freezing and stress‐shielding on the ultrastructure of rabbit patellar tendons , 1997, Journal of Orthopaedic Research.

[19]  A Viidik,et al.  Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortal storage. , 1966, Acta orthopaedica Scandinavica.

[20]  Brian J Cole,et al.  The use of allografts in orthopaedic surgery. , 2002, Instructional course lectures.

[21]  D. Caborn,et al.  Allograft anterior tibialis tendon with bioabsorbable interference screw fixation in anterior cruciate ligament reconstruction. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[22]  J. Hollis,et al.  A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. , 2003, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[23]  C. A. Miles,et al.  Thermal denaturation of collagen revisited , 1999, Proceedings / Indian Academy of Sciences.

[24]  F. Noyes,et al.  Bone-patellar ligament-bone and fascia lata allografts for reconstruction of the anterior cruciate ligament. , 1990, The Journal of bone and joint surgery. American volume.

[25]  M. Zobitz,et al.  A Biomechanical Analysis of Matched Bone-Patellar Tendon-Bone and Double-Looped Semitendinosus and Gracilis Tendon Grafts , 1999, The American journal of sports medicine.

[26]  M. Hull,et al.  A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[27]  P. Indelicato,et al.  The results of fresh-frozen patellar tendon allografts for chronic anterior cruciate ligament deficiency of the knee , 1992, The American journal of sports medicine.

[28]  P. Clavert,et al.  Effects of freezing/thawing on the biomechanical properties of human tendons , 2001, Surgical and Radiologic Anatomy.

[29]  R. Vanderby,et al.  The effect of in situ freezing on rabbit patellar tendon , 1992, The American journal of sports medicine.

[30]  F. Noyes,et al.  Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. , 1984, The Journal of bone and joint surgery. American volume.

[31]  J. Nyland,et al.  Two-year outcomes following ACL reconstruction with allograft tibialis anterior tendons: a retrospective study , 2003, Knee Surgery, Sports Traumatology, Arthroscopy.

[32]  S. Woo,et al.  Effects of postmortem storage by freezing on ligament tensile behavior. , 1986, Journal of biomechanics.