Fractional‐Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional‐Order Nonlinear Systems

A robust fractional-order dynamic output feedback sliding mode control (DOF-SMC) technique is introduced in this paper for uncertain fractional-order nonlinear systems. The control law consists of two parts: a linear part and a nonlinear part. The former is generated by the fractional-order dynamics of the controller and the latter is related to the switching control component. The proposed DOF-SMC ensures the asymptotical stability of the fractional-order closed-loop system whilst it is guaranteed that the system states hit the switching manifold in finite time. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed method.

[1]  Mehmet Önder Efe,et al.  Battery power loss compensated fractional order sliding mode control of a quadrotor UAV , 2012 .

[2]  Christopher Edwards,et al.  Sliding-Mode Output-Feedback Control Based on LMIs for Plants With Mismatched Uncertainties , 2009, IEEE Transactions on Industrial Electronics.

[3]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[4]  Yangquan Chen,et al.  Computers and Mathematics with Applications an Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form Optimal Control Time-optimal Control Fractional Calculus Fractional Order Optimal Control Fractional Dynamic Systems Riots_95 Optimal Control Toolbox , 2022 .

[5]  V. Gafiychuk,et al.  Mathematical modeling of time fractional reaction-diffusion systems , 2008 .

[6]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[7]  Yongsheng Ding,et al.  A fractional-order differential equation model of HIV infection of CD4+ T-cells , 2009, Math. Comput. Model..

[8]  José António Tenreiro Machado,et al.  Fractional Order Calculus: Basic Concepts and Engineering Applications , 2010 .

[9]  E Ben-Jacob,et al.  Lubricating bacteria model for branching growth of bacterial colonies. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Yongcan Cao,et al.  Distributed formation control for fractional-order systems: Dynamic interaction and absolute/relative damping , 2010, Syst. Control. Lett..

[11]  Eshel Ben-Jacob,et al.  Biofluiddynamics of lubricating bacteria , 2001 .

[12]  Cosku Kasnakoglu,et al.  A fractional adaptation law for sliding mode control , 2008 .

[13]  Han Ho Choi,et al.  Variable structure output feedback control design for a class of uncertain dynamic systems , 2002, Autom..

[14]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[15]  Mohammad Saleh Tavazoei,et al.  Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations , 2008, IEEE Transactions on Industrial Electronics.

[16]  Maamar Bettayeb,et al.  A sliding mode control for linear fractional systems with input and state delays , 2009 .

[17]  Alessandro Pisano,et al.  Sliding mode control approaches to the robust regulation of linear multivariable fractional‐order dynamics , 2010 .

[18]  Han Ho Choi Sliding-Mode Output Feedback Control Design , 2008, IEEE Transactions on Industrial Electronics.

[19]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[20]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[21]  Jeang-Lin Chang,et al.  OUTPUT FEEDBACK INTEGRAL SLIDING MODE CONTROLLER OF TIME-DELAY SYSTEMS WITH MISMATCH DISTURBANCES , 2012 .

[22]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[23]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[24]  Sara Dadras,et al.  Control of a fractional-order economical system via sliding mode , 2010 .

[25]  Reyad El-Khazali,et al.  Sliding Mode Control of Generalized fractional Chaotic Systems , 2006, Int. J. Bifurc. Chaos.

[26]  Mehmet Önder Efe,et al.  A Sufficient Condition for Checking the Attractiveness of a Sliding Manifold in Fractional Order Sliding Mode Control , 2012 .

[27]  Mehmet Önder Efe,et al.  Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.