Trans-splicing and polycistronic transcription in Caenorhabditis elegans.

[1]  Thomas Blumenthal,et al.  Operons as a common form of chromosomal organization in C. elegans , 1994, Nature.

[2]  H. Horvitz,et al.  The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. , 1994, Genetics.

[3]  P. Sternberg,et al.  The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. , 1994, Molecular biology of the cell.

[4]  H. Horvitz,et al.  C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2 , 1994, Cell.

[5]  T. Nilsen,et al.  Functional reconstitution of U6 snRNA in nematode cis- and trans-splicing: U6 can serve as both a branch acceptor and a 5′ exon , 1993, Cell.

[6]  I. Greenwald,et al.  Two novel transmembrane protein tyrosine kinases expressed during Caenorhabditis elegans hypodermal development , 1993, Molecular and cellular biology.

[7]  J. Spieth,et al.  Operons in C. elegans: Polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions , 1993, Cell.

[8]  T. Blumenthal,et al.  Conversion of a trans‐spliced C. elegans gene into a conventional gene by introduction of a splice donor site. , 1993, The EMBO journal.

[9]  T. Blumenthal,et al.  Functional analysis of a C. elegans trans-splice acceptor. , 1993, Nucleic acids research.

[10]  P. Sternberg,et al.  Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site , 1993, Molecular and cellular biology.

[11]  G. Hannon,et al.  Interaction of U6 snRNA with a sequence required for function of the nematode SL RNA in trans-splicing. , 1992, Science.

[12]  G. Hannon,et al.  U small nuclear ribonucleoprotein requirements for nematode cis- and trans-splicing in vitro. , 1991, The Journal of biological chemistry.

[13]  J. Spieth,et al.  Insertion of part of an intron into the 5' untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene , 1991, Molecular and cellular biology.

[14]  B. Blencowe,et al.  Targeted snRNP depletion reveals an additional role for mammalian U1 snRNP in spliceosome assembly , 1990, Cell.

[15]  N. Agabian Trans splicing of nuclear pre-mRNAs , 1990, Cell.

[16]  J. Thomas,et al.  The spliceosomal snRNAs of Caenorhabditis elegans. , 1990, Nucleic acids research.

[17]  B. Séraphin,et al.  Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing , 1989, Cell.

[18]  J. Abelson,et al.  An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. , 1988, Science.

[19]  J. Thomas,et al.  Cis and trans mRNA splicing in C. elegans. , 1988, Trends in genetics : TIG.

[20]  D. Hirsh,et al.  Trans-spliced leader RNA exists as small nuclear ribonucleoprotein particles in Caenorhabditis elegans , 1988, Nature.

[21]  J. Steitz,et al.  Trans splicing involves a novel form of small nuclear ribonucleoprotein particles , 1988, Nature.

[22]  T. Blumenthal,et al.  The C. elegans Trans-spliced leader RNA is bound to Sm and has a trimethylguanosine cap , 1988, Cell.

[23]  Michael R. Green,et al.  A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly , 1988, Cell.

[24]  T. Nilsen,et al.  Trans-splicing of nematode premessenger RNA. , 1993, Annual review of microbiology.

[25]  M. Green,et al.  Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. , 1991, Annual review of cell biology.

[26]  B. Ganem RNA world , 1987, Nature.