On the longest perpetual reductions in orthogonal expression reduction systems

We study perpetual reductions in orthogonal (or conflict-free) fully extended expression reduction systems (OERS). ERS is a formalism for rewriting that subsumes term rewriting systems (TRSs) and the l-calculus. We design a strategy that, for any given term t in a fully extended OERS, constructs a longest reduction starting from t if t is strongly normalizing and otherwise constructs an infinite reduction. We call this strategy a limit strategy. For a large class of OERSs a limit strategy is computable. The Conservation Theorem for fully extended OERSs follows easily from the properties of the strategy. We develop a method for computing the lengths of longest developments in OERSs. Copyright 2001 Elsevier Science B.V.

[1]  Jan A. Bergstra,et al.  Strong Normalization and Perpetual Reductions in the Lambda Calculus , 1982, J. Inf. Process. Cybern..

[2]  Philippe de Groote,et al.  The Conservation Theorem revisited , 1993, TLCA.

[3]  Assaf J. Kfoury,et al.  New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[4]  Roel C. de Vrijer A Direct Proof of the Finite Developments Theorem , 1985, J. Symb. Log..

[5]  Tobias Nipkow Orthogonal Higher-Order Rewrite Systems are Confluent , 1993, TLCA.

[6]  Paula Severi,et al.  Perpetual Reductions in Lambda-Calculus , 1999, Inf. Comput..

[7]  Laurent Regnier,et al.  Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..

[8]  Fairouz Kamareddine Postponement, conservation and preservation of strong normalization for generalized reduction , 2000, J. Log. Comput..

[9]  Zurab Khasidashvili Beta-reductions and Beta Developments of Lambda Terms with the Least Number of Steps , 1988, Conference on Computer Logic.

[10]  Michael J. O'Donnell,et al.  Computing in systems described by equations , 1977, Lecture Notes in Computer Science.

[11]  Vincent van Oostrom,et al.  Weak Orthogonality Implies Con(cid:2)uence(cid:3) the Higher(cid:4)Order Case , 2011 .

[12]  Zurab Khasidashvili Perpetual reductions and strong normalization in orthogonal term rewriting systems , 1993 .

[13]  Jean-Louis Lassez,et al.  Computational logic: essays in honor of Alan Robinson , 1991 .

[14]  Jean-Jacques Lévy,et al.  Computations in Orthogonal Rewriting Systems, II , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[15]  Zurab Khasidashvili Higher order recursive program schemes are Turing incomplete , 1993 .

[16]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[17]  Helmut Schwichtenberg,et al.  Strict Functionals for Termination Proofs , 1995, TLCA.

[18]  Jaco van de Pol,et al.  Termination Proofs for Higher-order Rewrite Systems , 1993, HOA.

[19]  Benedetto Intrigila,et al.  The Ant-Lion Paradigm for Strong Normalization , 1994, Inf. Comput..

[20]  Zurab Khasidashvili The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems , 1994, LFCS.

[21]  J. V. D. Pol,et al.  Termination of higher-order rewrite systems , 1996 .

[22]  Zurab Khasidashvili On the equivalence of persistent term rewriting systems and recursive program schemes , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[23]  Mizuhito Ogawa,et al.  Perpetuality and Uniform Normalization in Orthogonal Rewrite Systems , 2001, Inf. Comput..

[24]  David A. Plaisted,et al.  Polynomial Time Termination and Constraint Satisfaction Tests , 1993, RTA.

[25]  Vincent van Oostrom,et al.  Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..

[26]  F. Raamsdonk Confluence and Normalisation of Higher-Order Rewriting , 1996 .

[27]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[28]  Vincent van Oostrom,et al.  Context-sensitive conditional expression reduction systems , 1995, Electron. Notes Theor. Comput. Sci..

[29]  V. van Oostrom,et al.  Confluence for Abstract and Higher-Order Rewriting , 1994 .

[30]  Marina Lenisa Semantic Techniques for Deriving Coinductive Characterizations of Observational Equivalences for Lambda-calculi , 1997, TLCA.

[31]  Hongwei Xi,et al.  Weak and Strong Beta Normalisations in Typed Lambda-Calculi , 1997, TLCA.

[32]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[33]  Morten Heine Sørensen Efficient Longest and Infinite Reduction Paths in Untyped Lambda-Calculi , 1996, CAAP.

[34]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[35]  Zurab Khasidashvili The Church-rosser theorem in orthogonal combinatory reduction systems , 1991 .

[36]  John C. Reynolds,et al.  Algebraic Methods in Semantics , 1985 .

[37]  Mizuhito Ogawa,et al.  Perpetuality and Uniform Normalization , 1997, ALP/HOA.

[38]  Furio Honsell,et al.  Semantical Analysis of Perpetual Strategies in lambda-Calculus , 1999, Theor. Comput. Sci..

[39]  A. Church,et al.  Some properties of conversion , 1936 .

[40]  Roel de Vrijer,et al.  Exactly estimating functionals and strong normalization , 1987 .

[41]  Zurab Khasidashvili On Higher Order Recursive Program Schemes , 1994, CAAP.

[42]  G Boudol Computational semantics of term rewriting systems , 1986 .

[43]  Morten Heine Sørensen,et al.  Strong Normalization from Weak Normalization in Typed Lambda-Calculi , 1997, Inf. Comput..

[44]  A. Church The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics Studies) , 1985 .

[45]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.

[46]  Zurab Khasidashvili Perpetual reductions in orthogonal combinatory reduction systems , 1993 .

[47]  David A. Wolfram,et al.  The Clausal Theory of Types , 1993 .

[48]  Furio Honsell,et al.  Some Results on the Full Abstraction Problem for Restricted Lambda Calculi , 1993, MFCS.

[49]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[50]  Zurab Khasidashvili Perpetuality and Strong Normalization in Orthogonal Term Rewriting Systems , 1994, STACS.

[51]  Vincent van Oostrom Finite Family Developments , 1997, RTA.

[52]  Vincent van Oostrom,et al.  Confluence by Decreasing Diagrams , 1994, Theor. Comput. Sci..

[53]  Yohji Akama,et al.  A Lambda-to-CL Translation for Strong Normalization , 1997, TLCA.

[54]  Zurab Khasidashvili Optimal Normalization in Orthogonal Term Rewriting Systems , 1993, RTA.

[55]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[56]  Bernhard Gramlich,et al.  On Termination and Confluence Properties of Disjoint and Constructor-Sharing Conditional Rewrite Systems , 1996, Theor. Comput. Sci..

[57]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .