There Does Not Exist a Minimal Full Trio with Respect to Bounded Context-Free Languages
暂无分享,去创建一个
[1] Ryuichi Ito. Every Semilinear Set is a Finite Union of Disjoint Linear Sets , 1969, J. Comput. Syst. Sci..
[2] Jean Berstel,et al. Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.
[3] Jonathan Goldstine,et al. Substitution and Bounded Languages , 1972, J. Comput. Syst. Sci..
[4] M. Schützenberger,et al. Rational sets in commutative monoids , 1969 .
[5] Seymour Ginsburg,et al. The mathematical theory of context free languages , 1966 .
[6] Jean Berstel,et al. Une suite decroissante de cônes rationnels , 1974, ICALP.
[7] Maurice Nivat,et al. Quelques problèmes ouverts en théorie des langages algébriques , 1979, RAIRO Theor. Informatics Appl..
[8] Seymour Ginsburg,et al. Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .
[9] Juha Kortelainen. Every Commutative Quasirational Language is Regular , 1986, RAIRO Theor. Informatics Appl..
[10] Tuukka Salmi,et al. Very small families generated by bounded and unbounded context-free languages , 2009 .
[11] J. Beauquier,et al. VERY SMALL FAMILIES OF ALGEBRAIC NONRATIONAL LANGUAGES , 1980 .