Clique Vertex Magic Cover of a Graph

Let G admit an H-edge covering and $${f : V \cup E \to \{1,2,\ldots,n+e\}}$$ be a bijective mapping for G then f is called H-edge magic total labeling of G if there is a positive integer constant m(f) such that each subgraph Hi, i = 1, . . . , r of G is isomorphic to H and $${f(H_i)=f(H)=\Sigma_{v \in V(H_i)}f(v)+\Sigma_{e \in E(H_i)} f(e)=m(f)}$$. In this paper we define a subgraph-vertex magic cover of a graph and give some construction of some families of graphs that admit this property. We show the construction of some Cn- vertex magic covered and clique magic covered graphs.

[1]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  Ramón M. Figueroa-Centeno,et al.  On Super Edge-Magic Graphs , 2002, Ars Comb..

[4]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[5]  A. Kotzig,et al.  Magic Valuations of Finite Graphs , 1970, Canadian Mathematical Bulletin.

[6]  S. M. Hegde,et al.  On magic graphs , 2003, Australas. J Comb..

[7]  W. Wallis,et al.  Magic Graphs , 2001 .

[8]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).