Penalized PCA approaches for B-spline expansions of smooth functional data
暂无分享,去创建一个
[1] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[2] Catherine A. Sugar,et al. Principal component models for sparse functional data , 1999 .
[3] J. Ramsay,et al. Principal components analysis of sampled functions , 1986 .
[4] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[5] Ana M. Aguilera,et al. Using basis expansions for estimating functional PLS regression Applications with chemometric data , 2010 .
[6] D. Ruppert. Selecting the Number of Knots for Penalized Splines , 2002 .
[7] H. Akaike. A new look at the statistical model identification , 1974 .
[8] Ana M. Aguilera,et al. Forecasting with unequally spaced data by a functional principal component approach , 1999 .
[9] M. Bhatti,et al. The calculation of integrals involving B-splines by means of recursion relations , 2006, Appl. Math. Comput..
[10] Angelika van der Linde,et al. Variational Bayesian functional PCA , 2008, Comput. Stat. Data Anal..
[11] Paul H. C. Eilers,et al. Flexible smoothing with B-splines and penalties , 1996 .
[12] Roberto Viviani,et al. Functional principal component analysis of fMRI data , 2005, Human brain mapping.
[13] Philippe Besse,et al. Simultaneous non-parametric regressions of unbalanced longitudinal data , 1997 .
[14] Jianhua Z. Huang,et al. Functional principal components analysis via penalized rank one approximation , 2008, 0807.4862.
[15] Hiroyuki Fujioka,et al. Optimal smoothing and interpolating splines with constraints , 2007, 2007 46th IEEE Conference on Decision and Control.
[16] A. Cuevas,et al. Linear functional regression: The case of fixed design and functional response , 2002 .
[17] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[18] Seungjin Choi,et al. Independent Component Analysis , 2009, Handbook of Natural Computing.
[19] J. Dauxois,et al. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .
[20] Deville. Méthodes statistiques et numériques de l'analyse harmonique , 1974 .
[21] M. Durbán,et al. Flexible smoothing with P-splines: a unified approach , 2002 .
[22] W. Saeys,et al. Potential applications of functional data analysis in chemometrics , 2008 .
[23] Clyde F. Martin,et al. Optimal curve fitting and smoothing using normalized uniform B-splines: a tool for studying complex systems , 2005, Appl. Math. Comput..
[24] F. O’Sullivan. A Statistical Perspective on Ill-posed Inverse Problems , 1986 .
[25] Ana M. Aguilera,et al. Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus , 2008, Comput. Stat. Data Anal..
[26] Ke Chen,et al. Applied Mathematics and Computation , 2022 .
[27] M. M. Segovia-Gonzalez,et al. Explaining functional principal component analysis to actuarial science with an example on vehicle insurance , 2009 .
[28] H. V. Trees. Detection, Estimation, And Modulation Theory , 2001 .
[29] Jesús Picó,et al. Data understanding with PCA: Structural and Variance Information plots , 2010 .
[30] Frédéric Ferraty,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[31] H. Müller,et al. Functional Data Analysis for Sparse Longitudinal Data , 2005 .
[32] C. R. Deboor,et al. A practical guide to splines , 1978 .
[33] S. Konishi,et al. Functional principal component analysis via regularized Gaussian basis expansions and its application to unbalanced data , 2007 .
[34] A. M. Aguilera,et al. Principal component estimation of functional logistic regression: discussion of two different approaches , 2004 .
[35] P. Sarda,et al. Functional linear model , 1999 .
[36] Francisco A. Ocaña,et al. Forecasting Pollen Concentration by a Two‐Step Functional Model , 2010, Biometrics.
[37] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[38] Ana M. Aguilera,et al. Computational considerations in functional principal component analysis , 2007, Comput. Stat..
[39] B. Silverman,et al. Smoothed functional principal components analysis by choice of norm , 1996 .
[40] Ana M. Aguilera,et al. Approximation of estimators in the PCA of a stochastic process using B-splines , 1996 .
[41] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[42] H. Muller,et al. Generalized functional linear models , 2005, math/0505638.
[43] P. J. García Nieto,et al. Using multivariate adaptive regression splines and multilayer perceptron networks to evaluate paper manufactured using Eucalyptus globulus , 2012, Appl. Math. Comput..
[44] F. Yao,et al. Penalized spline models for functional principal component analysis , 2006 .
[45] Paul H. C. Eilers,et al. Splines, knots, and penalties , 2010 .
[46] Hans-Georg Müller,et al. Functional Data Analysis , 2016 .