Cardinality constrained minimum cut problems: complexity and algorithms

In several applications the solutions of combinatorial optimization problems (COP) are required to satisfy an additional cardinality constraint, that is to contain a fixed number of elements. So far the family of (COP) with cardinality constraints has been little investigated. The present work tackles a new problem of this class: the k-cardinality minimum cut problem (k-card cut). For a number of variants of this problem we show complexity results in the most significant graph classes. Moreover, we develop several heuristic algorithms for the k-card cut problem for complete, complete bipartite, and general graphs. Lower bounds are obtained through an SDP formulation, and used to show the quality of the heuristics. Finally, we present a randomized SDP heuristic and numerical results.

[1]  Franz Rendl,et al.  Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..

[2]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[3]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[4]  Vijay V. Vazirani,et al.  Finding k-cuts within twice the optimal , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[5]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[6]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .

[7]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[8]  Refael Hassin,et al.  Approximation Algorithms for Minimum K -Cut , 2000, Algorithmica.

[9]  B. Borchers A C library for semidefinite programming , 1999 .

[10]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[11]  Maxim Sviridenko,et al.  Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts , 1999, IPCO.

[12]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[13]  David R. Karger,et al.  Minimum cuts in near-linear time , 1996, STOC '96.

[14]  Horst W. Hamacher,et al.  Fixed Cardinality Combinatorial Optimization Problems - A Survey , 1999 .

[15]  Horst W. Hamacher,et al.  Integer programming approaches tofacilities layout models with forbidden areas , 1998 .

[16]  Francesco Maffioli,et al.  The image of weighted combinatorial problems , 1991, Ann. Oper. Res..

[17]  Frank Harary,et al.  Finite Graphs and Networks, An Introduction with Applications. , 1967 .

[18]  M. Goemans Semideenite Programming in Combinatorial Optimization 1 , 2022 .

[19]  F. R. Gantmakher The Theory of Matrices , 1984 .

[20]  Francesco Maffioli,et al.  on the Computation of Pfaffians , 1994, Discret. Appl. Math..

[21]  M. Ehrgott,et al.  Heuristics for the K-Cardinality Tree and Subgraph Problems , 1996 .

[22]  Vijay V. Vazirani,et al.  Finding k Cuts within Twice the Optimal , 1995, SIAM J. Comput..

[23]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[24]  Mauro Dell'Amico,et al.  The k-cardinality Assignment Problem , 1997, Discret. Appl. Math..

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[26]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[27]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[28]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[29]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[30]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[31]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[32]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[33]  Giovanni Rinaldi,et al.  An efficient algorithm for the minimum capacity cut problem , 1990, Math. Program..