Positive-definite states of a Klein Gordon-type particle

A possible way for the consistent probability interpretation of the Klein-Gordon equation is proposed. It is assumed that some states of a scalar charged particle cannot be physically realized. The rest of quantum states are proven to have positive-definite probability distributions.

[1]  Y. Kano,et al.  A NEW PHASE-SPACE DISTRIBUTION FUNCTION IN THE STATISTICAL THEORY OF THE ELECTROMAGNETIC FIELD , 1965 .

[2]  Peculiarities of the Weyl-Wigner-Moyal formalism for scalar charged particles , 2001, quant-ph/0102095.

[3]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[4]  Eugene P. Wigner,et al.  Localized States for Elementary Systems , 1949 .

[5]  W. Pauli,et al.  On Quantization of the Scalar Relativistic Wave Equation. (In German) , 1934 .

[6]  W. Gordon,et al.  Der Comptoneffekt nach der Schrödingerschen Theorie , 1926 .

[7]  Scalar Charged Particle in Weyl–Wigner–Moyal Phase Space. Constant Magnetic Field , 2001, quant-ph/0112146.

[8]  Kevin Cahill,et al.  DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS. , 1969 .

[9]  H. Feshbach,et al.  Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles , 1958 .

[10]  Michael Martin Nieto,et al.  Coherent States , 2009, Compendium of Quantum Physics.

[11]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[12]  Kevin Cahill,et al.  Ordered Expansions in Boson Amplitude Operators , 1969 .

[13]  Relativistic coherent states and charge structure of the coordinate and momentum operators , 2002, quant-ph/0206180.

[14]  E. Wigner Die Messung quantenmechanischer Operatoren , 1952 .

[15]  G. C. Hegerfeldt Remark on causality and particle localization , 1974 .

[16]  Owen P. Leary,et al.  40: PATIENT-SPECIFIC PROGNOSTICATION AFTER TBI IS RELATED TO BLEED PHENOTYPE AND ANATOMIC LOCATION , 2006, Testament d'un patriote exécuté.

[17]  J. Petzold,et al.  Eine kritische Analyse der Ladungsdichte des Klein-Gordon-Feldes , 1967 .

[18]  O. Klein,et al.  Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English) , 1926 .

[19]  Eugene P. Wigner,et al.  The Intrinsic Parity of Elementary Particles , 1952 .

[20]  Quantum mechanics of Klein–Gordon-type fields and quantum cosmology , 2003, gr-qc/0306003.

[21]  V. Fock,et al.  Zur Schrödingerschen Wellenmechanik , 1926 .

[22]  V. Fock Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen Massenpunkt , 1926 .

[23]  T. Lesinski,et al.  Non-empirical pairing energy density functional , 2008, 0809.2895.

[24]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[25]  J. Klauder,et al.  COHERENT STATES: APPLICATIONS IN PHYSICS AND MATHEMATICAL PHYSICS , 1985 .

[26]  Localizing the relativistic electron , 1999, quant-ph/9903087.

[27]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[28]  P. Dirac The quantum theory of the electron , 1928 .

[29]  E. Prugovec̆ki Stochastic Quantum Mechanics And Quantum Spacetime , 1984 .

[30]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[31]  S. T. Ali Stochastic localization, quantum mechanics on phase space and quantum space-time , 1985 .