Impaired mitochondrial function due to familial Alzheimer's disease-causing presenilins mutants via Ca(2+) disruptions.

[1]  Hong Qi,et al.  Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations , 2015, Scientific Reports.

[2]  Hajime Takano,et al.  Suppression of InsP3 Receptor-Mediated Ca2+ Signaling Alleviates Mutant Presenilin-Linked Familial Alzheimer's Disease Pathogenesis , 2014, The Journal of Neuroscience.

[3]  B. Kazmierczak,et al.  Membrane associated complexes in calcium dynamics modelling , 2013, Physical biology.

[4]  David Terman,et al.  Modeling the neuroprotective role of enhanced astrocyte mitochondrial metabolism during stroke. , 2013, Biophysical journal.

[5]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[6]  David Terman,et al.  The low conductance mitochondrial permeability transition pore confers excitability and CICR wave propagation in a computational model. , 2011, Journal of theoretical biology.

[7]  I. Bezprozvanny,et al.  Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease. , 2010, Journal of Alzheimer's disease : JAD.

[8]  Robert W Buzzeo,et al.  Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice. , 2010, Journal of Alzheimer's disease : JAD.

[9]  T. Iwatsubo,et al.  Gain-of-Function Enhancement of IP3 Receptor Modal Gating by Familial Alzheimer’s Disease–Linked Presenilin Mutants in Human Cells and Mouse Neurons , 2010, Science Signaling.

[10]  Michael J. Berridge,et al.  Calcium hypothesis of Alzheimer’s disease , 2010, Pflügers Archiv - European Journal of Physiology.

[11]  R. Rizzuto,et al.  Modulation of intracellular Ca2+ signalling in HeLa cells by the apoptotic cell death enhancer PK11195. , 2008, Biochemical pharmacology.

[12]  V. Lee,et al.  Mechanism of Ca2+ Disruption in Alzheimer's Disease by Presenilin Regulation of InsP3 Receptor Channel Gating , 2008, Neuron.

[13]  M. Brini,et al.  Calcium Homeostasis and Mitochondrial Dysfunction in Striatal Neurons of Huntington Disease* , 2008, Journal of Biological Chemistry.

[14]  T. Pozzan,et al.  Mitochondrial Ca2+ as a key regulator of cell life and death , 2007, Cell Death and Differentiation.

[15]  M. S. Jafri,et al.  Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics. , 2007, American journal of physiology. Cell physiology.

[16]  Don-On Daniel Mak,et al.  Inositol trisphosphate receptor Ca2+ release channels. , 2007, Physiological reviews.

[17]  M. Saleet Jafri,et al.  Modeling the mechanism of metabolic oscillations in ischemic cardiac myocytes. , 2006, Journal of theoretical biology.

[18]  M. Beal,et al.  Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases , 2006, Nature.

[19]  John Hardy,et al.  A Hundred Years of Alzheimer's Disease Research , 2006, Neuron.

[20]  F. LaFerla,et al.  Enhanced caffeine‐induced Ca2+ release in the 3xTg‐AD mouse model of Alzheimer's disease , 2005, Journal of neurochemistry.

[21]  M. S. Jafri,et al.  Mitochondrial Calcium Signaling and Energy Metabolism , 2005, Annals of the New York Academy of Sciences.

[22]  F. LaFerla,et al.  Alzheimer's disease: Aβ, tau and synaptic dysfunction , 2005 .

[23]  Grace E. Stutzmann Calcium Dysregulation, IP3 Signaling, and Alzheimer’s Disease , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[24]  Raimond L Winslow,et al.  A mitochondrial oscillator dependent on reactive oxygen species. , 2004, Biophysical journal.

[25]  Grace E Stutzmann,et al.  Dysregulated IP3 Signaling in Cortical Neurons of Knock-In Mice Expressing an Alzheimer's-Linked Mutation in Presenilin1 Results in Exaggerated Ca2+ Signals and Altered Membrane Excitability , 2004, The Journal of Neuroscience.

[26]  M. Hayden,et al.  Huntingtin and Huntingtin-Associated Protein 1 Influence Neuronal Calcium Signaling Mediated by Inositol-(1,4,5) Triphosphate Receptor Type 1 , 2003, Neuron.

[27]  R. Winslow,et al.  An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. , 2003, Biophysical journal.

[28]  H. Kretzschmar,et al.  Capacitive Calcium Entry Is Directly Attenuated by Mutant Presenilin-1, Independent of the Expression of the Amyloid Precursor Protein* , 2003, The Journal of Biological Chemistry.

[29]  F. LaFerla Calcium dyshomeostasis and intracellular signalling in alzheimer's disease , 2002, Nature Reviews Neuroscience.

[30]  R. Balaban,et al.  Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria. , 2001, Cell calcium.

[31]  J. Keizer,et al.  Mitochondrial modulation of intracellular Ca(2+) signaling. , 2001, Journal of theoretical biology.

[32]  E. Barrett,et al.  Stimulation-Evoked Increases in Cytosolic [Ca2+] in Mouse Motor Nerve Terminals Are Limited by Mitochondrial Uptake and Are Temperature-Dependent , 2000, The Journal of Neuroscience.

[33]  R. Empson,et al.  Functional Phenotype in Transgenic Mice Expressing Mutant Human Presenilin-1 , 2000, Neurobiology of Disease.

[34]  M. Mattson,et al.  Presenilin-1 Mutation Increases Neuronal Vulnerability to Focal Ischemia In Vivo and to Hypoxia and Glucose Deprivation in Cell Culture: Involvement of Perturbed Calcium Homeostasis , 2000, The Journal of Neuroscience.

[35]  B. de Strooper,et al.  Presenilin 1 Controls γ-Secretase Processing of Amyloid Precursor Protein in Pre-Golgi Compartments of Hippocampal Neurons , 1999, The Journal of cell biology.

[36]  C. Cotman,et al.  Alzheimer's Presenilin-1 Mutation Potentiates Inositol 1,4,5-Trisphosphate-Mediated Calcium Signaling in Xenopus , 1999 .

[37]  Michael R. Duchen,et al.  Transient Mitochondrial Depolarizations Reflect Focal Sarcoplasmic Reticular Calcium Release in Single Rat Cardiomyocytes , 1998, The Journal of cell biology.

[38]  M. Beal,et al.  Mitochondrial dysfunction in neurodegenerative diseases. , 1998, Biochimica et biophysica acta.

[39]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[40]  Hugo Vanderstichele,et al.  Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein , 1998, Nature.

[41]  J. Hardy,et al.  The presenilins and Alzheimer's disease. , 1997, Human molecular genetics.

[42]  J. Keizer,et al.  Minimal model of beta-cell mitochondrial Ca2+ handling. , 1997, The American journal of physiology.

[43]  A. Vercesi,et al.  The Role of Reactive Oxygen Species in Mitochondrial Permeability Transition , 1997, Bioscience reports.

[44]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Mccormack,et al.  Role of calcium ions in regulation of mammalian intramitochondrial metabolism. , 1990, Physiological reviews.

[46]  Z. Khachaturian Introduction and Overview , 1989, Annals of the New York Academy of Sciences.

[47]  R. Denton,et al.  Ca2+ transport by mammalian mitochondria and its role in hormone action. , 1985, The American journal of physiology.

[48]  R. Bohnensack The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator , 1982, Journal of bioenergetics and biomembranes.

[49]  E. Melamed,et al.  Apoptosis as a general cell death pathway in neurodegenerative diseases. , 2000, Journal of neural transmission. Supplementum.