The High-Pressure Phase Transition in Jamesonite: A Single-Crystal Synchrotron X-ray Diffraction Study

The high-pressure behavior of jamesonite (FePb4Sb6S14, a = 4.08(3) Å, b = 19.08(3) Å, c = 15.67(3) Å, β= 91.89°, space group P21/c) has been investigated using in situ HP synchrotron X-ray single-crystal diffraction up to ~17 GPa with a diamond anvil cell under hydrostatic conditions. Results of the volume isothermal equation of state (EoS), determined by fitting the P-V data with a third-order Birch–Murnaghan (BM) EoS, are V0 = 1207.1(4) Å3, K0 = 36(1) GPa and K’ = 5.7(7). At high pressure, jamesonite undergoes a phase transition to an orthorhombic structure with a Pmcb space group (β-jamesonite). The analysis of β-jamesonite’s compressibility up to 16.6 GPa, studied by fitting the data with a second-order BM-EoS, gives V0 = 1027(2) Å3, K0 = 74(2) GPa. The comparison of the structural refinements at different pressures indicates that Fe, Pb and Sb do not change their coordination number over the whole investigated P range, respectively, 6 for Fe, 7 and 8 for Pb and 5 + 2 for Sb. However, a significant change occurs on the orientation of Sb lone electron pairs upon the phase transition in accordance with the change in symmetry. Furthermore, a discontinuity in the Fe chain evolution at the transition pressure is observed.

[1]  I. Collings,et al.  High-pressure single-crystal synchrotron X-ray diffraction study of lillianite , 2021, American Mineralogist.

[2]  Yuqiong Li,et al.  The flotation process, smelting process and extraction products on jamesonite: A review , 2021 .

[3]  P. A. Nishad,et al.  Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies. , 2021, Chemosphere.

[4]  I. Collings,et al.  The High Pressure Behavior of Galenobismutite, PbBi2S4: A Synchrotron Single Crystal X-ray Diffraction Study , 2019, Crystals.

[5]  E. Makovicky,et al.  A high-pressure phase transition in chalcostibite, CuSbS2 , 2018, European Journal of Mineralogy.

[6]  Hong‐Jie Peng,et al.  A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. , 2017, Chemical Society reviews.

[7]  Xiang Wu,et al.  Pressure-induced structural and spin transitions of Fe3S4 , 2017, Scientific Reports.

[8]  S. Kharbish,et al.  Raman spectroscopy of the Pb-Sb sulfosalts minerals: Boulangerite, jamesonite, robinsonite and zinkenite , 2016 .

[9]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[10]  M. B. Rabeh,et al.  Investigation on optical properties of SnxSbySz sulfosalts thin films , 2014 .

[11]  R. Angel,et al.  ABSORB-7 and ABSORB-GUI for single-crystal absorption corrections , 2013 .

[12]  F. Nestola,et al.  THE ROLE OF THE Sb3+ LONE-ELECTRON PAIRS AND Fe2+ COORDINATION IN THE HIGH-PRESSURE BEHAVIOR OF BERTHIERITE , 2012 .

[13]  George M. Sheldrick,et al.  ShelXle: a Qt graphical user interface for SHELXL , 2011, Journal of applied crystallography.

[14]  A. Zanetti,et al.  The effect of oxo-component on the high-pressure behavior of amphiboles , 2010 .

[15]  W. Depmeier Minerals as advanced materials , 2009 .

[16]  H. Dittrich,et al.  Progress in sulfosalt research , 2009 .

[17]  C. Stanley,et al.  Parajamesonite revisited: background of the discreditation of an enigmatic mineral species , 2007 .

[18]  H. Dittrich,et al.  Sulfosalts — A new class of compound semiconductors for photovoltaic applications , 2007 .

[19]  P. Baláž,et al.  Selective leaching of antimony and arsenic from mechanically activated tetrahedrite, jamesonite and enargite , 2006 .

[20]  E. Makovicky,et al.  Crystal structure and cation lone electron pair activity of Bi2S3 between 0 and 10 GPa , 2005 .

[21]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[22]  Y. Matsushita,et al.  Structure and physical properties of 1D magnetic chalcogenide, jamesonite (FePb4Sb6S14). , 2003, Inorganic chemistry.

[23]  E. Makovicky,et al.  Equation of state and crystal structure of Sb2S3 between 0 and 10 GPa , 2003 .

[24]  L. L. Leuch,et al.  Single Crystal Structures and Magnetic Properties of Two Iron or Manganese‐Lead‐Antimony Sulfides: MPb4Sb6S14 (M: Fe, Mn). , 2003 .

[25]  L. L. Leuch,et al.  Single crystal structures and magnetic properties of two iron or manganese-lead-antimony sulfides: MPb4Sb6S14 (M: Fe, Mn) , 2003 .

[26]  B. Winkler,et al.  The high-pressure α/β phase transition in lead sulphide (PbS) , 2003 .

[27]  E. Makovicky,et al.  New measure of distortion for coordination polyhedra , 1998 .

[28]  I. Vicković,et al.  IVTON– a program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications , 1996 .

[29]  E. Makovicky,et al.  Determination of the centroid or `the best centre' of a coordination polyhedron , 1996 .

[30]  E. Makovicky Rod-based sulphosalt structures derived from the SnS and PbS archetypes , 1993 .

[31]  Xilin Li,et al.  The jamesonite-benavidesite series , 1987 .

[32]  V. Razumov,et al.  COLLOIDAL QUANTUM DOTS OF LEAD CHALCOGENIDES FOR PHOTOELECTRIC DEVICES , 2020 .

[33]  E. Makovicky,et al.  Pressure induced phase transition in Pb6Bi2S9 , 2011 .

[34]  P. Poudeu,et al.  A New Class of Ferromagnetic Semiconductors with Quasi 1 D { Fe 2 Se 10 } Ladders , 2010 .

[35]  S. Krivovichev Minerals as advanced materials I , 2008 .

[36]  R. Angel Equations of State , 2000 .

[37]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[38]  John W. Anthony,et al.  Handbook of mineralogy , 1990 .

[39]  M. Buerger,et al.  The Crystal Structure of Jamesonite, FePb4Sb6S14 , 1957 .