Increasing the selectivity of biologically active tetranuclear arene ruthenium assemblies

[1]  H. Maeda,et al.  Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls , 2015, Expert opinion on drug delivery.

[2]  S. Lippard,et al.  Encapsulation of Pt(iv) prodrugs within a Pt(ii) cage for drug delivery , 2014, Chemical science.

[3]  P. Choyke,et al.  Cancer Drug Delivery: Considerations in the Rational Design of Nanosized Bioconjugates , 2014, Bioconjugate chemistry.

[4]  P. Nowak‐Sliwinska,et al.  Highly water soluble trithiolato-bridged dinuclear arene ruthenium complexes , 2014 .

[5]  A. Singh,et al.  Recent advances in supramolecular and biological aspects of arene ruthenium(II) complexes , 2014 .

[6]  R. Gupta,et al.  Supramolecular architectures with pyridine-amide based ligands: discrete molecular assemblies and their applications. , 2014, Dalton transactions.

[7]  J. M. Kumar,et al.  Exploiting Natural Products to Build Metalla-Assemblies: The Anticancer Activity of Embelin-Derived Rh(III) and Ir(III) Metalla-Rectangles , 2014, Molecules.

[8]  S. Hong,et al.  A new arene-Ru based supramolecular coordination complex for efficient binding and selective sensing of green fluorescent protein. , 2014, Dalton transactions.

[9]  B. Therrien,et al.  Insight into the dynamic ligand exchange process involved in bipyridyl linked arene ruthenium metalla-rectangles , 2014 .

[10]  J. M. Kumar,et al.  Biological studies of chalcogenolato-bridged dinuclear half-sandwich complexes. , 2013, Inorganic chemistry.

[11]  A. Mishra,et al.  Coordination-Driven Self-Assembly of Arene–Ruthenium Compounds , 2013 .

[12]  P. Sadler,et al.  Next-generation metal anticancer complexes: multitargeting via redox modulation. , 2013, Inorganic chemistry.

[13]  Timothy R. Cook,et al.  Biomedical and biochemical applications of self-assembled metallacycles and metallacages. , 2013, Accounts of chemical research.

[14]  Zijian Guo,et al.  Targeting and delivery of platinum-based anticancer drugs. , 2013, Chemical Society reviews.

[15]  P. Dyson,et al.  Challenges and Opportunities in the Development of Organometallic Anticancer Drugs , 2012 .

[16]  Gregory S. Smith,et al.  Bio‐Metallodendrimers – Emerging Strategies in Metal‐Based Drug Design , 2012 .

[17]  D. Marko,et al.  Targeting the DNA-topoisomerase complex in a double-strike approach with a topoisomerase inhibiting moiety and covalent DNA binder. , 2012, Chemical communications.

[18]  J. Furrer,et al.  Physical and Physicochemical Stimuli-Responsive Arene Ruthenium Metallaprism , 2012 .

[19]  James E. M. Lewis,et al.  Stimuli-responsive Pd2L4metallosupramolecular cages: towards targeted cisplatin drug delivery , 2012 .

[20]  L. Juillerat-Jeanneret,et al.  Organometallic cages as vehicles for intracellular release of photosensitizers. , 2012, Journal of the American Chemical Society.

[21]  M. Jakupec,et al.  Maleimide-functionalised organoruthenium anticancer agents and their binding to thiol-containing biomolecules. , 2012, Chemical communications.

[22]  Hyunuk Kim,et al.  Self-assembled metalla-bowls for selective sensing of multi-carboxylate anions. , 2012, Dalton transactions.

[23]  Hyunuk Kim,et al.  Self-assembled arene-ruthenium-based rectangles for the selective sensing of multi-carboxylate anions. , 2011, Chemistry.

[24]  A. Casini,et al.  Organometallic ruthenium(II) arene compounds with antiangiogenic activity. , 2011, Journal of medicinal chemistry.

[25]  P. Sadler,et al.  Functionalization of osmium arene anticancer complexes with (poly)arginine: effect on cellular uptake, internalization, and cytotoxicity. , 2011, Bioconjugate chemistry.

[26]  J. Navarro,et al.  Molecular architecture of redox-active half-sandwich Ru(II) cyclic assemblies. Interactions with biomolecules and anticancer activity , 2010 .

[27]  J. Furrer,et al.  In‐ and Out‐of‐Cavity Interactions by Modulating the Size of Ruthenium Metallarectangles , 2010 .

[28]  J. Furrer,et al.  Designing the Host-Guest Properties of Tetranuclear Arene Ruthenium Metalla-Rectangles to Accommodate a Pyrene Molecule , 2010 .

[29]  Carlos Sanchez‐Cano,et al.  Novel and emerging approaches for the delivery of metallo-drugs. , 2009, Dalton transactions.

[30]  R. Gambrell,et al.  Peptide targeting of platinum anti-cancer drugs. , 2009, Bioconjugate chemistry.

[31]  J. Navarro,et al.  Tetranuclear coordination assemblies based on half-sandwich ruthenium(II) complexes: noncovalent binding to DNA and cytotoxicity. , 2009, Inorganic chemistry.

[32]  B. Therrien Arene Ruthenium Cages: Boxes Full of Surprises , 2009 .

[33]  B. Therrien,et al.  Photochemical [2+2] cycloaddition of the olefinic double bonds in the supramolecular rectangle [Ru4(η6-p-cymene)4(μ-oxalato)2(μ-4,4′-bipyridylethylene)2]4+ , 2009 .

[34]  B. Therrien Functionalised η6-arene ruthenium complexes , 2009 .

[35]  P. Dyson,et al.  The "complex-in-a-complex" cations [(acac)2M subset Ru6(p-iPrC6H4Me)6(tpt)2(dhbq)3]6+: A trojan horse for cancer cells. , 2008, Angewandte Chemie.

[36]  C. Hu,et al.  Anion-recognition studies of a Re(I)-based square containing the dipyridyl-amide ligand , 2007 .

[37]  Y. Sohn,et al.  Selective tumor targeting by enhanced permeability and retention effect. Synthesis and antitumor activity of polyphosphazene-platinum (II) conjugates. , 2005, Journal of inorganic biochemistry.

[38]  I. Fichtner,et al.  Synthesis and biological activity of water-soluble maleimide derivatives of the anticancer drug carboplatin designed as albumin-binding prodrugs. , 2004, Bioconjugate chemistry.

[39]  P. Taimen,et al.  NuMA and nuclear lamins behave differently in Fas-mediated apoptosis , 2003, Journal of Cell Science.

[40]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[41]  L. Schwartz,et al.  Do all programmed cell deaths occur via apoptosis? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Therrien Biologically relevant arene ruthenium metalla-assemblies , 2015 .

[43]  S. Lippard,et al.  Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. , 2008, Bioconjugate chemistry.

[44]  C. S. Allardyce,et al.  [Ru(η6-p-cymene)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo- [3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells , 2001 .

[45]  Helen Stoeckli-Evans,et al.  Mono-, di- and tetra-nuclear p-cymeneruthenium complexes containing oxalato ligands , 1997 .