Simultaneous estimation of indirect and interaction effects using structural equation models

Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models wit h non-linear constraints make it possible to estimate interaction effects wh ile correcting for measurement error. From the various specifications, Joreskog and Yang's (1996, 1998), likely the most parsimonious, has bee n chosen and further simplified. Up to now, only direct effects have bee n specified, thus wasting much of the capability of the structural equation a pproach. This paper presents and discusses an extension of Joreskog and Yang's specification that can handle direct, indirect and interaction ef fects simultaneously. The model is illustrated by a study of the effects of a n interactive style of use of budgets on both company innovation and performance.

[1]  Rachel T. Fouladi,et al.  Performance of Modified Test Statistics in Covariance and Correlation Structure Analysis Under Conditions of Multivariate Nonnormality , 2000 .

[2]  David T. Wilson An integrated model of buyer-seller relationships , 1995 .

[3]  M. Browne Asymptotically distribution-free methods for the analysis of covariance structures. , 1984, The British journal of mathematical and statistical psychology.

[4]  C. O'Connor An introduction to multivariate statistical analysis: 2nd edn. by T. W. Anderson. 675 pp. Wiley, New York (1984) , 1987 .

[5]  Michael H. Morris,et al.  Relationship Marketing in Practice , 1998 .

[6]  V. Govindarajan Appropriateness of accounting data in performance evaluation: An empirical examination of environmental uncertainty as an intervening variable☆ , 1984 .

[7]  Henk A. L. Kiers,et al.  Why Factor Analysis Often is the Incorrect Model for Analyzing Bipolar Concepts, and What Model to Use Instead , 1994 .

[8]  L. Hayduk,et al.  Latent Variable Interaction and Quadratic Effect Estimation: A Two-Step Technique Using Structural Equation Analysis , 1996 .

[9]  A. Satorra,et al.  A scaled difference chi-square test statistic for moment structure analysis , 1999 .

[10]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[11]  J. Steenkamp,et al.  Assessing Measurement Invariance in Cross-National Consumer Research , 1998 .

[12]  R. Ping A Parsimonious Estimating Technique for Interaction and Quadratic Latent Variables , 1995 .

[13]  H. Kiiveri An incomplete data approach to the analysis of covariance structures , 1987 .

[14]  James Algina,et al.  A Note on Estimating the Jöreskog-Yang Model for Latent Variable Interaction Using LISREL 8.3 , 2001 .

[15]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[16]  D. Oakes Direct calculation of the information matrix via the EM , 1999 .

[17]  D. A. Kenny,et al.  Estimating the nonlinear and interactive effects of latent variables. , 1984 .

[18]  Sandy D. Jap Pie-Expansion Efforts: Collaboration Processes in Buyer–Supplier Relationships , 1999 .

[19]  Willard L. Rodgers,et al.  An Evaluation of Statistical Matching , 1984 .

[20]  Marcello D'Orazio,et al.  Statistical Matching and Official Statistics , 2002 .

[21]  W. E. Saris,et al.  Characteristics of Structural Equation Models which Affect the Power of the Likelihood Ratio Test , 1988 .

[22]  V. Govindarajan A Contingency Approach to Strategy Implementation at the Business-Unit Level: Integrating Administrative Mechanisms with Strategy , 1988 .

[23]  B. Muthén,et al.  A comparison of some methodologies for the factor analysis of non‐normal Likert variables: A note on the size of the model , 1992 .

[24]  Susanne Rässler,et al.  Aspects concerning data fusion techniques , 1998 .

[25]  Igor Kononenko,et al.  Inductive and Bayesian learning in medical diagnosis , 1993, Appl. Artif. Intell..

[26]  Vannevar Bush,et al.  As we may think , 1945, INTR.

[27]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.

[28]  N. Wermuth,et al.  Joint response graphs and separation induced by triangular systems , 2004 .

[29]  Haiyang Li,et al.  Product Innovation Strategy and the Performance of New Technology Ventures in China , 2001 .

[30]  Terry E. Duncan,et al.  Approaches to Testing Interaction Effects Using Structural Equation Modeling Methodology. , 1998, Multivariate behavioral research.

[31]  K. Jöreskog A General Method for Estimating a Linear Structural Equation System. , 1970 .

[32]  Ron Kohavi,et al.  Error-Based and Entropy-Based Discretization of Continuous Features , 1996, KDD.

[33]  Kenneth A. Bollen,et al.  Interactions of latent variables in structural equation models , 1998 .

[34]  Richard G. Lomax,et al.  A guide to multiple-sample structural equation modeling , 1983 .

[35]  Tim Berners-Lee,et al.  The World Wide Web - Past, Present and Future , 2006, J. Digit. Inf..

[36]  Margaret A. Abernethy,et al.  The role of budgets in organizations facing strategic change: an exploratory study , 1999 .

[37]  James Jaccard,et al.  Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. , 1995 .

[38]  Josep Bisbe Viñas The interactive use of management control systems in product-innovating firms , 2002 .

[39]  Paul E. Spector Summated Rating Scale Construction: An Introduction , 1992 .

[40]  Donald B. Rubin,et al.  Statistical Matching Using File Concatenation With Adjusted Weights and Multiple Imputations , 1986 .

[41]  A. Goldberger,et al.  Structural Equation Models in the Social Sciences. , 1974 .

[42]  Antonio Davila,et al.  Performance Measurement and Control Systems for Implementing Strategy: Text and Cases , 1999 .

[43]  Thomas Simpson XIX. A letter to the Right Honourable George Earl of Macclesfield, President of the Royal Society, on the advantage of taking the mean of a number of observations, in practical Astronomy , 1755, Philosophical Transactions of the Royal Society of London.

[44]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[45]  Thomas Ritter A Framework for Analyzing Interconnectedness of Relationships , 2000 .

[46]  Denise M. English,et al.  Levers of Control , 1996 .

[47]  G. A. Marcoulides,et al.  New developments and techniques in structural equation modeling , 2001 .

[48]  Robert Simons,et al.  Strategic orientation and top management attention to control systems , 1991 .

[49]  W. H. Schuur,et al.  Nonparametric Unidimensional Unfolding for Multicategory Data , 1992 .

[50]  Albert Satorra,et al.  Robustness issues in structural equation modeling: a review of recent developments , 1990 .

[51]  A. Satorra,et al.  Corrections to test statistics and standard errors in covariance structure analysis. , 1994 .

[52]  J. Batista-Foguet,et al.  Using structural equation models to evaluate the magnitude of measurement error in blood pressure , 2001, Statistics in medicine.

[53]  A. Boomsma,et al.  The robustness of LISREL modeling revisted. , 2001 .

[54]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[55]  Richard P. Bagozzi,et al.  On the Use of Structural Equation Models in Experimental Designs , 1989 .

[56]  James Algina,et al.  Comparison of Methods for Estimating and Testing Latent Variable Interactions , 2002 .

[57]  Douglas M. Hawkins,et al.  Interactive LISREL : user's guide , 2001 .

[58]  B. Muthén,et al.  A comparison of some methodologies for the factor analysis of non‐normal Likert variables , 1985 .

[59]  R. Likert “Technique for the Measurement of Attitudes, A” , 2022, The SAGE Encyclopedia of Research Design.

[60]  Daniel C. Smith,et al.  Cross-Functional Product Development Teams, Creativity, and the Innovativeness of New Consumer Products , 2001 .

[61]  Kalidas Ashok,et al.  Extending Discrete Choice Models to Incorporate Attitudinal and Other Latent Variables , 2002 .

[62]  P. Homer The Mediating Role of Attitude toward the Ad: Some Additional Evidence , 1990 .

[63]  Fan Yang,et al.  Nonlinear structural equation models: The Kenny-Judd model with Interaction effects , 1996 .

[64]  Karl G. Jöreskog,et al.  Robust standard errors and Chi-Squares for the interaction models , 2000 .

[65]  D. Ford,et al.  Interaction, relationships and networks in business markets: an evolving perspective , 1996 .

[66]  S. West,et al.  Multiple Regression: Testing and Interpreting Interactions. , 1994 .

[67]  George A. Marcoulides,et al.  Interaction and Nonlinear Effects in Structural Equation Modeling , 1998 .

[68]  Randall E. Schumacker,et al.  Latent Variable Interaction Modeling , 2002 .

[69]  J. Jaccard,et al.  LISREL Approaches to Interaction Effects in Multiple Regression , 1998 .

[70]  A C C Gibbs,et al.  Data Analysis , 2009, Encyclopedia of Database Systems.

[71]  K. Möller,et al.  Business Relationships and Networks: Managerial Challenge of Network Era , 1999 .

[72]  J. Jaccard,et al.  Interaction effects in multiple regression , 1992 .

[73]  Thierry Bardini,et al.  Bootstrapping: Douglas Engelbart, coevolution, and the origins of personal computing , 2000 .

[74]  M. Bengtsson,et al.  Cooperation and competition in relationships between competitors in business networks , 1999 .

[75]  Harri Oinas-Kukkonen,et al.  Fourth generation hypermedia: some missing links for the World Wide Web , 1997, Int. J. Hum. Comput. Stud..