Structure of the icosahedral Ti-Zr-Ni quasicrystal

The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined by invoking similarities to periodic crystalline phases, diffraction data, and the results from ab initio calculations. The structure is modeled by decorations of the canonical-cell tiling geometry. The initial decoration model is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1-approximant structure of the quasicrystal. The decoration model is optimized using a method of structural analysis combining a least-squares refinement of diffraction data with results from ab initio calculations. The resulting structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration rule and structural details are discussed.

[1]  Yoshihiko Yokoyama,et al.  Stable Icosahedral Al–Pd–Mn and Al–Pd–Re Alloys , 1990 .

[2]  Hafner,et al.  Structure and lattice dynamics of rational approximants to icosahedral Al-Cu-Li. , 1994, Physical review. B, Condensed matter.

[3]  M. Mihalkovič,et al.  Tiling of canonical cells : large Pa3 approximants , 1993 .

[4]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[5]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[6]  M. Boissieu,et al.  The structure of the icosahedral AlPdMn quasicrystal , 1991 .

[7]  D. Gratias,et al.  A geometric approach to chemical ordering in icosahedral structures , 1993 .

[8]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[9]  V. Elser The diffraction pattern of projected structures , 1986 .

[10]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[11]  J. W. Barton,et al.  The crystal structure of Ti2Ni , 1959 .

[12]  J. Pannetier,et al.  Neutron scattering studies of quasicrystals , 1989 .

[13]  C. Oguey,et al.  Ideal AlMnSi quasicrystal : a structural model with icosahedral clusters , 1989 .

[14]  Bak,et al.  Icosahedral crystals: Where are the atoms? , 1986, Physical review letters.

[15]  K. Kelton,et al.  The role of oxygen in the formation of titanium-based icosahedral phases and crystal approximants , 1995 .

[16]  R. Hennig,et al.  Structural modelling of the Ti–Zr–Ni quasicrystal , 2000 .

[17]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[18]  J. Pannetier,et al.  An approach to the structure of quasicrystals: A single crystal X-ray and neutron diffraction study of the R-Al5CuLi3 phase , 1988 .

[19]  V. Molokanov,et al.  Quasicrystals and amorphous alloys in TiZrNi system: Glassforming ability, structure and properties , 1990 .

[20]  Zhu,et al.  Icosahedral quasicrystal decoration models. I. Geometrical principles. , 1996, Physical review. B, Condensed matter.

[21]  X-ray phase determination by the principle of minimum charge. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[22]  A. Inoue,et al.  A Stable Quasicrystal in Al-Cu-Fe System , 1987 .

[23]  C. Dong,et al.  A single-crystal X-ray diffraction study of an Al70.5Pd21Mn8.5 icosahedral quasicrystal , 1992 .

[24]  C. Dong,et al.  A new icosahedral quasicrystal in rapidly solidified FeTi2 , 1986 .

[25]  R. Hennig,et al.  First-principles study on the stabilization of approximants to icosahedral titanium—3d-transition-metal quasicrystals by silicon and oxygen , 1997 .

[26]  R. Stroud,et al.  A stable Ti-based quasicrystal , 1997 .

[27]  Henley Cell geometry for cluster-based quasicrystal models. , 1991, Physical review. B, Condensed matter.

[28]  R. Hennig,et al.  Cluster structure and hydrogen in Ti-Zr-Ni quasicrystals and approximants , 2000 .

[29]  G. Miller,et al.  New oxides of the filled-Ti2Ni type structure , 1994 .

[30]  R. Stroud,et al.  Hydrogen absorption and storage in quasicrystalline and related Ti-Zr-Ni alloys , 1998 .

[31]  K. Kelton,et al.  STRUCTURAL REFINEMENT OF 1/1 BCC APPROXIMANTS TO QUASICRYSTALS : BERGMAN-TYPE W(TIZRNI) AND MACKAY-TYPE M(TIZRFE) , 1998 .

[32]  Sakari Ruppi,et al.  A new Rietveld refinement of κ-Al2O3 , 2001 .

[33]  Mozer,et al.  Six-dimensional Fourier analysis of the icosahedral Al73Mn , 1988, Physical review. B, Condensed matter.

[34]  V. Elser,et al.  Structure determinations for random-tiling quasicrystals , 2000, cond-mat/0004126.

[35]  K. Kelton,et al.  A new 1/1 crystal approximant to the stable Ti-Zr-Ni icosahedral quasicrystal , 1997 .

[36]  Phillips,et al.  Icosahedral quasicrystal decoration models. II. Optimization under realistic Al-Mn potentials. , 1996, Physical review. B, Condensed matter.

[37]  J. Cahn,et al.  A 6‐D Structural Model for the Icosahedral (Al,Si)‐Mn Quasicrystal , 1988 .

[38]  J. Pannetier,et al.  Icosahedral crystals: neutron diffraction tells you where the atoms are , 1989 .

[39]  Yamamoto Ideal structure of icosahedral Al-Cu-Li quasicrystals. , 1992, Physical review. B, Condensed matter.

[40]  M. Krajčí,et al.  Electronic structure in icosahedral AlCuLi quasicrystals and approximant crystals , 1994 .

[41]  V. Elser,et al.  Quasicrystal structure of (Al, Zn)49Mg32 , 1986 .

[42]  Lefèbvre,et al.  Neutron-diffraction study of icosahedral Al-Cu-Fe single quasicrystals. , 1991, Physical review. B, Condensed matter.

[43]  E. Abe,et al.  Stable icosahedral quasicrystals in binary Cd-Ca and Cd-Yb systems , 2000 .

[44]  E. Abe,et al.  Alloys: A stable binary quasicrystal , 2000, Nature.

[45]  E. Cockayne,et al.  Use of periodic approximants in the structure refinement of icosahedral AlCuFe , 1993 .

[46]  Ze Zhang,et al.  A new icosahedral phase with m35 symmetry , 1985 .

[47]  J. Dubois,et al.  Atomic structure of the icosahedral Al-Li-Cu quasicrystal , 1991 .

[48]  S. Ritsch Highly perfect decagonal Al-Co-Ni quasicrystals , 1996 .

[49]  L. Levine,et al.  Stability of the icosahedral phase in Mn-Ti alloys , 1989 .

[50]  E. Majzoub,et al.  Ternary phase diagram studies in Ti–Zr–Ni alloys , 2000 .

[51]  J. Smith,et al.  The structures of NiZr2, NiZr and their hafnium analogs , 1962 .

[52]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[53]  Elser,et al.  Crystal and quasicrystal structures in Al-Mn-Si alloys. , 1985, Physical review letters.

[54]  V. Elser,et al.  Ab initio based modeling of i-AlPdMn , 2000 .

[55]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[56]  A. Inoue,et al.  Highly ordered structure of icosahedral quasicrystals in Zn-Mg-RE (RE ≡ rare earth metals) systems , 1994 .

[57]  L. Pauling,et al.  The crystal structure of the metallic phase Mg32(Al, Zn)49 , 1957 .

[58]  A. Inoue,et al.  Stable Zn-Mg-rare-earth face-centred icosahedral alloys with pentagonal dodecahedral solidification morphology , 1994 .

[59]  Hafner,et al.  Atomic and electronic structure of icosahedral Al-Pd-Mn alloys and approximant phases. , 1995, Physical review. B, Condensed matter.

[60]  E. Cockayne,et al.  Total-energy-based prediction of a quasicrystal structure , 2001, cond-mat/0102085.

[61]  Phillips,et al.  Total energies of improved quasicrystal models. , 1991, Physical review letters.

[62]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[63]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[64]  Dunlap,et al.  Quasicrystal structure of rapidly solidified Ti-Ni-based alloys. , 1988, Physical review. B, Condensed matter.