Quantum emission from hexagonal boron nitride monolayers

[1]  Xuedan Ma,et al.  Room-temperature single-photon generation from solitary dopants of carbon nanotubes. , 2015, Nature nanotechnology.

[2]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[3]  Robert Schneider,et al.  Single-photon emission from localized excitons in an atomically thin semiconductor , 2015 .

[4]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[5]  Zhixin Chen,et al.  Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper , 2015, Scientific Reports.

[6]  P. Mallet,et al.  Single photon emitters in exfoliated WSe2 structures. , 2015, Nature nanotechnology.

[7]  Jian-Wei Pan,et al.  Single quantum emitters in monolayer semiconductors. , 2014, Nature nanotechnology.

[8]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[9]  I. Grigorieva,et al.  Proton transport through one-atom-thick crystals , 2014, Nature.

[10]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[11]  Xiaoji G. Xu,et al.  One-dimensional surface phonon polaritons in boron nitride nanotubes , 2014, Nature Communications.

[12]  Young Hee Lee,et al.  Large-area monolayer hexagonal boron nitride on Pt foil. , 2014, ACS nano.

[13]  J. Hollingsworth,et al.  Competition between auger recombination and hot-carrier trapping in PL intensity fluctuations of type II nanocrystals. , 2014, Small.

[14]  C. Voisin,et al.  Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement. , 2014, Physical review letters.

[15]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[16]  P. Miró,et al.  Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. , 2014, Angewandte Chemie.

[17]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[18]  T. Umeda,et al.  A room temperature single photon source in silicon carbide , 2013, CLEO: 2013.

[19]  R. Cingolani,et al.  Non‐Blinking Single‐Photon Generation with Anisotropic Colloidal Nanocrystals: Towards Room‐Temperature, Efficient, Colloidal Quantum Sources , 2013, Advanced materials.

[20]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[21]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[22]  Harald Giessen,et al.  Diamond nanophotonics , 2012, Beilstein journal of nanotechnology.

[23]  Christoph Becher,et al.  Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. , 2012, Optics express.

[24]  Moon J. Kim,et al.  Toward the controlled synthesis of hexagonal boron nitride films. , 2012, ACS nano.

[25]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[26]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[27]  Jing Kong,et al.  Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. , 2012, Nano letters.

[28]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[29]  L. Wirtz,et al.  Coupling of excitons and defect states in boron-nitride nanostructures , 2011, 1103.2628.

[30]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[31]  Jing Kong,et al.  Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. , 2010, Nano letters.

[32]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[33]  K. Novoselov,et al.  Hunting for monolayer boron nitride: optical and Raman signatures. , 2010, Small.

[34]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[35]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[36]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[37]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[38]  A. Greentree,et al.  Photophysics of chromium-related diamond single-photon emitters , 2009, 0909.1873.

[39]  Igor Aharonovich,et al.  Two-level ultrabright single photon emission from diamond nanocrystals. , 2009, Nano letters.

[40]  C. Jin,et al.  Fabrication of a freestanding boron nitride single layer and its defect assignments. , 2009, Physical review letters.

[41]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[42]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[44]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[45]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[49]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[50]  T. Ohshima,et al.  A silicon carbide room-temperature single-photon source. , 2013, Nature materials.

[51]  R. A. Smith,et al.  Single Photon Sources , 2008 .

[52]  W. Orellana,et al.  Stability of native defects in hexagonal and cubic boron nitride , 2001 .