Rotation- and scale-invariant texture features based on spectral moment invariants.

Moment invariants previously developed for the analysis of two-dimensional patterns and objects regardless of orientation, scale, and position are extended to the Fourier transform domain to quantify signatures of textures in the power spectrum of images. The moment invariants of the power spectrum, which we call spectral moment invariants (SMIs), systematically extract rotation- and scale-invariant texture features by complex spectral moments instead of by performing ad hoc measurements of the shape of the two-dimensional power spectrum as do most of the existing Fourier transform domain methods. To our knowledge, the method of using SMIs to quantify texture features is the first to extract invariant texture information directly from the Fourier spectrum. The discriminative capability of SMIs in recognizing rotation- and scale-independent texture features is demonstrated by texture classification experiments. The results indicate that algorithms using SMIs can achieve performances comparable with, or better than, those algorithms using the spatial or wavelet transform domain texture features.

[1]  Jan Flusser,et al.  Combined Invariants to Linear Filtering and Rotation , 1999, Int. J. Pattern Recognit. Artif. Intell..

[2]  M. E. Jernigan,et al.  Texture Analysis and Discrimination in Additive Noise , 1990, Comput. Vis. Graph. Image Process..

[3]  Ruzena Bajcsy,et al.  Computer Description of Textured Surfaces , 1973, IJCAI.

[4]  A method to minimize edge effects in two‐dimensional discrete Fourier transforms , 1988 .

[5]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[6]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Jan Flusser,et al.  Rotation Moment Invariants for Recognition of Symmetric Objects , 2006, IEEE Transactions on Image Processing.

[8]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[9]  William E. Higgins,et al.  Texture Segmentation using 2-D Gabor Elementary Functions , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Peng Jia-xiong,et al.  Invariance analysis of improved Zernike moments , 2002 .

[12]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[13]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Tieniu Tan,et al.  A Comparative Study of Rotation Invariant Classification and Retrieval of Texture Images , 1998, BMVC.

[15]  R. Porter,et al.  Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes , 1997 .

[16]  M. M. Leung,et al.  Scale and rotation invariant texture classification , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[17]  Nicolas Barbier,et al.  Textural Ordination Based on Fourier Spectral Decomposition: A Method to Analyze and Compare Landscape Patterns , 2006, Landscape Ecology.

[18]  Richard W. Conners,et al.  A Theoretical Comparison of Texture Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Shi-Nine Yang,et al.  Extracting periodicity of a regular texture based on autocorrelation functions , 1997, Pattern Recognit. Lett..

[20]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[21]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[22]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Glenn Healey,et al.  Using Zernike moments for the illumination and geometry invariant classification of multispectral texture , 1998, IEEE Trans. Image Process..

[24]  Tieniu Tan,et al.  New texture signatures and their use in rotation invariant texture classification , 2002 .

[25]  Alessandro Neri,et al.  Robust rotation-invariant texture classification using a model based approach , 2004, IEEE Transactions on Image Processing.

[26]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  M. Teague Image analysis via the general theory of moments , 1980 .

[28]  B. Julesz Spatial nonlinearities in the instantaneous perception of textures with identical power spectra. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Bela Julesz,et al.  A theory of preattentive texture discrimination based on first-order statistics of textons , 2004, Biological Cybernetics.