Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method

In isogeometric analysis, parameterization of computational domain has great effects as mesh generation in finite element analysis. In this paper, based on the concept of harmonic mapping from the computational domain to parametric domain, a variational harmonic approach is proposed to construct analysis-suitable parameterization of computational domain from CAD boundary for 2D and 3D isogeometric applications. Different from the previous elliptic mesh generation method in finite element analysis, the proposed method focuses on isogeometric version, and converts the elliptic PDE into a nonlinear optimization problem, in which a regular term is integrated into the optimization formulation to achieve more uniform and orthogonal iso-parametric structure near convex (concave) parts of the boundary. Several examples are presented to show the efficiency of the proposed method in 2D and 3D isogeometric analysis.

[1]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[2]  Charlie C. L. Wang,et al.  Algebraic grid generation on trimmed parametric surface using non‐self‐overlapping planar Coons patch , 2004 .

[3]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[4]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[5]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[6]  Ying He,et al.  Direct-Product Volumetric Parameterization of Handlebodies via Harmonic Fields , 2010, 2010 Shape Modeling International Conference.

[7]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[8]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[9]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[10]  Vibeke Skytt,et al.  Spline Volume Fairing , 2010, Curves and Surfaces.

[11]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[12]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[13]  Charlie C. L. Wang,et al.  Non-self-overlapping Hermite interpolation mapping: a practical solution for structured quadrilateral meshing , 2005, Comput. Aided Des..

[14]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[15]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[16]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[17]  Ahmed Ratnani,et al.  An Isogeometric Analysis approach for the study of the gyrokinetic quasi-neutrality equation , 2012, J. Comput. Phys..

[18]  Yaoxin Zhang,et al.  An improved nearly-orthogonal structured mesh generation system with smoothness control functions , 2012, J. Comput. Phys..

[19]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[20]  Chi-Wing Fu,et al.  Parameterization of Star-Shaped Volumes Using Green's Functions , 2010, GMP.

[21]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[22]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[23]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[24]  Yaoxin Zhang,et al.  2D nearly orthogonal mesh generation with controls on distortion function , 2006, J. Comput. Phys..

[25]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[26]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[27]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.

[28]  S. Spekreijse Elliptic grid generation based on Laplace equations and algebraic transformations , 1995 .

[29]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[30]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[31]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[32]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[33]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[34]  Hung-Yuan Chang,et al.  Orthogonal grid generation of an irregular region using a local polynomial collocation method , 2013, J. Comput. Phys..

[35]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[36]  Ahmed Ratnani,et al.  An Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell Equations , 2012, J. Sci. Comput..

[37]  Charlie C. L. Wang,et al.  Non‐self‐overlapping structured grid generation on an n‐sided surface , 2004 .

[38]  Philip E. Gill,et al.  Practical optimization , 1981 .

[39]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[40]  Régis Duvigneau,et al.  An Introduction to Isogeometric Analysis with Application to Thermal Conduction , 2009 .

[41]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[42]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .