Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method
暂无分享,去创建一个
Régis Duvigneau | André Galligo | Bernard Mourrain | Gang Xu | B. Mourrain | A. Galligo | R. Duvigneau | Gang Xu
[1] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[2] Charlie C. L. Wang,et al. Algebraic grid generation on trimmed parametric surface using non‐self‐overlapping planar Coons patch , 2004 .
[3] Régis Duvigneau,et al. Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..
[4] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[5] T. Hughes,et al. Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .
[6] Ying He,et al. Direct-Product Volumetric Parameterization of Handlebodies via Harmonic Fields , 2010, 2010 Shape Modeling International Conference.
[7] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[8] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[9] Ping Wang,et al. Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..
[10] Vibeke Skytt,et al. Spline Volume Fairing , 2010, Curves and Surfaces.
[11] J. M. Cascón,et al. A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .
[12] Elaine Cohen,et al. Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..
[13] Charlie C. L. Wang,et al. Non-self-overlapping Hermite interpolation mapping: a practical solution for structured quadrilateral meshing , 2005, Comput. Aided Des..
[14] G. Sangalli,et al. A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .
[15] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[16] Gerald E. Farin,et al. Discrete Coons patches , 1999, Comput. Aided Geom. Des..
[17] Ahmed Ratnani,et al. An Isogeometric Analysis approach for the study of the gyrokinetic quasi-neutrality equation , 2012, J. Comput. Phys..
[18] Yaoxin Zhang,et al. An improved nearly-orthogonal structured mesh generation system with smoothness control functions , 2012, J. Comput. Phys..
[19] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[20] Chi-Wing Fu,et al. Parameterization of Star-Shaped Volumes Using Green's Functions , 2010, GMP.
[21] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[22] Thomas J. R. Hughes,et al. Conformal solid T-spline construction from boundary T-spline representations , 2013 .
[23] Thomas J. R. Hughes,et al. Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..
[24] Yaoxin Zhang,et al. 2D nearly orthogonal mesh generation with controls on distortion function , 2006, J. Comput. Phys..
[25] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[26] Hong Qin,et al. Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.
[27] Bernd Hamann,et al. Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.
[28] S. Spekreijse. Elliptic grid generation based on Laplace equations and algebraic transformations , 1995 .
[29] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[30] Tom Lyche,et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .
[31] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.
[32] T. Hughes,et al. Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .
[33] I. Akkerman,et al. Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..
[34] Hung-Yuan Chang,et al. Orthogonal grid generation of an irregular region using a local polynomial collocation method , 2013, J. Comput. Phys..
[35] Régis Duvigneau,et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .
[36] Ahmed Ratnani,et al. An Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell Equations , 2012, J. Sci. Comput..
[37] Charlie C. L. Wang,et al. Non‐self‐overlapping structured grid generation on an n‐sided surface , 2004 .
[38] Philip E. Gill,et al. Practical optimization , 1981 .
[39] Régis Duvigneau,et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..
[40] Régis Duvigneau,et al. An Introduction to Isogeometric Analysis with Application to Thermal Conduction , 2009 .
[41] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[42] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .