Wasserstein blue noise sampling

In this article, we present a multi-class blue noise sampling algorithm by throwing samples as the constrained Wasserstein barycenter of multiple density distributions. Using an entropic regularization term, a constrained transport plan in the optimal transport problem is provided to break the partition required by the previous Capacity-Constrained Voronoi Tessellation method. The entropic regularization term cannot only control spatial regularity of blue noise sampling, but it also reduces conflicts between the desired centroids of Vornoi cells for multi-class sampling. Moreover, the adaptive blue noise property is guaranteed for each individual class, as well as their combined class. Our method can be easily extended to multi-class sampling on a point set surface. We also demonstrate applications in object distribution and color stippling.

[1]  Li-Yi Wei,et al.  Parallel Poisson disk sampling , 2008, ACM Trans. Graph..

[2]  Jian-Jun Zhang,et al.  Blue noise sampling using an SPH-based method , 2015, ACM Trans. Graph..

[3]  Mohamed S. Ebeida,et al.  Efficient maximal poisson-disk sampling , 2011, SIGGRAPH 2011.

[4]  Arif Mahmood,et al.  HOPC: Histogram of Oriented Principal Components of 3D Pointclouds for Action Recognition , 2014, ECCV.

[5]  Gabriel Peyré,et al.  Wasserstein barycentric coordinates , 2016, ACM Trans. Graph..

[6]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[7]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[8]  Shi-Qing Xin,et al.  Centroidal power diagrams with capacity constraints , 2016, ACM Trans. Graph..

[9]  Marc Alexa,et al.  Spectral sampling of manifolds , 2010, ACM Trans. Graph..

[10]  Joachim Weickert,et al.  Multi‐Class Anisotropic Electrostatic Halftoning , 2012, Comput. Graph. Forum.

[11]  A Z DippéMark,et al.  Antialiasing through stochastic sampling , 1985 .

[12]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[13]  Steve C. Maddock,et al.  Accurate multidimensional Poisson-disk sampling , 2009, TOGS.

[14]  Eugene Fiume,et al.  Hierarchical Poisson disk sampling distributions , 1992 .

[15]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[16]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[17]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[18]  Cem Yuksel,et al.  Sample Elimination for Generating Poisson Disk Sample Sets , 2015, Comput. Graph. Forum.

[19]  K.B. White,et al.  Poisson Disk Point Sets by Hierarchical Dart Throwing , 2007, 2007 IEEE Symposium on Interactive Ray Tracing.

[20]  Ligang Liu,et al.  Blue noise sampling of surfaces , 2012, Comput. Graph..

[21]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[22]  Robert Ulichney,et al.  Dithering with blue noise , 1988, Proc. IEEE.

[23]  Ligang Liu,et al.  Capacity-Constrained Delaunay Triangulation for point distributions , 2011, Comput. Graph..

[24]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[25]  Salvatore Torquato,et al.  Nonequilibrium hard-disk packings with controlled orientational order , 2000 .

[26]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[27]  Oliver Deussen,et al.  Accurate Spectral Analysis of Two-Dimensional Point Sets , 2011, J. Graphics, GPU, & Game Tools.

[28]  Li-yi Wei Multi-class blue noise sampling , 2010 .

[29]  Raanan Fattal Blue-noise point sampling using kernel density model , 2011, SIGGRAPH 2011.

[30]  Oliver Deussen,et al.  Farthest-point optimized point sets with maximized minimum distance , 2011, HPG '11.

[31]  Li-yi Wei,et al.  Differential domain analysis for non-uniform sampling , 2011, SIGGRAPH 2011.

[32]  O. Deussen,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, SIGGRAPH 2009.

[33]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[34]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[35]  C. Villani Optimal Transport: Old and New , 2008 .

[36]  Kevin J. Parker,et al.  Properties of combined blue noise patterns , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[37]  Thouis R. Jones Efficient Generation of Poisson-Disk Sampling Patterns , 2006, J. Graph. Tools.

[38]  Kun Zhou,et al.  Visual Abstraction and Exploration of Multi-class Scatterplots , 2014, IEEE Transactions on Visualization and Computer Graphics.

[39]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, ACM Trans. Graph..

[40]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[41]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..

[42]  Ligang Liu,et al.  Variational Blue Noise Sampling , 2012, IEEE Transactions on Visualization and Computer Graphics.