Energy-based Robust controller design for flexible spacecraft

This paper presents a class of non-model-based position controllers for a kind of flexible spacecraft. With the controllers, one can achieve not only the closed-loop stability of the original distributed parameter system, but also the asymptotic stability of the truncated system, which is obtained through representing the deflection of the appendage by an arbitrary finite number of flexible modes. The system dynamics are not explicitly involved in the controller design and stability proof. Instead, only a very basic system energy relationship of the flexible spacecraft is utilized. The controllers possess several remarkable advantages over the traditional model-based ones. Numerical simulations are carried out on a kind of spacecraft with one flexible appendage and satisfactory results are obtained.

[1]  Vinod J. Modi,et al.  Dynamics and control of multibody systems: An approach with application☆ , 1996 .

[2]  Shuzhi Sam Ge,et al.  NON-MODEL-BASED POSITION CONTROL OF A PLANAR MULTI-LINK FLEXIBLE ROBOT , 1997 .

[3]  Ö. Morgül Orientation and stabilization of a flexible beam attached to a rigid body: planar motion , 1991 .

[4]  Yong Li Control of a nonlinear hybrid system arising in flexible spacecraft , 1999, Int. J. Syst. Sci..

[5]  Vinod J. Modi,et al.  Robust attitude and vibration control of the space station , 1996 .

[6]  H. Heinrich,et al.  E. Kreyszig, Advanced Engineering Mathematics. IX + 856 S. m. 402 Abb. New York/London 1963. John Wiley and Sons, Inc. Preis geb. 79/‐ , 1964 .

[7]  F. Karray,et al.  A general formulation for the nonlinear dynamics and control of orbiting flexible structures , 1993 .

[8]  S. Tadikonda Articulated, Flexible Multibody Dynamics Modeling: Geostationary Operational Environmental Satellite-8 Case Study , 1997 .

[9]  Shuzhi Sam Ge,et al.  Model-free controller design for a single-link flexible smart materials robot , 2000 .

[10]  C. Chevallereau,et al.  Modelling and control of flexible robots , 1991 .

[11]  N. H. McClamroch,et al.  Bang-Bang Control of Flexible Spacecraft Slewing Maneuvers: Guaranteed Terminal Pointing Accuracy , 1990 .

[12]  J. W. Humberston Classical mechanics , 1980, Nature.

[13]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[14]  John L. Junkins,et al.  von Karman Lecture: Adventures on the Interface of Dynamics and Control , 1997 .

[15]  Shuzhi Sam Ge,et al.  Energy-based robust controller design for multi-link flexible robots , 1996 .

[16]  Pierre T. Kabamba,et al.  Planar, time-optimal, rest-to-rest slewing maneuvers of flexible spacecraft , 1989 .

[17]  S. Tadikonda,et al.  Assumed Modes Method and Articulated Flexible Multibody Dynamics , 1995 .

[18]  S. S. Ge,et al.  Dynamic Modeling of a Smart Materials Robot , 1998 .

[19]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .