Gait Recognition Using Period-Based Phase Synchronization for Low Frame-Rate Videos

This paper proposes a method for period-based gait trajectory matching in the eigenspace using phase synchronization for low frame-rate videos. First, a gait period is detected by maximizing the normalized autocorrelation of the gait silhouette sequence for the temporal axis. Next, a gait silhouette sequence is expressed as a trajectory in the eigenspace and the gait phase is synchronized by time stretching and time shifting of the trajectory based on the detected period. In addition, multiple period-based matching results are integrated via statistical procedures for more robust matching in the presence of fluctuations among gait sequences. Results of experiments conducted with 185 subjects to evaluate the performance of the gait verification with various spatial and temporal resolutions, demonstrate the effectiveness of the proposed method.

[1]  Hiroshi Murase,et al.  Moving object recognition in eigenspace representation: gait analysis and lip reading , 1996, Pattern Recognit. Lett..

[2]  Masahiko Yachida,et al.  Video Synthesis with High Spatio-temporal Resolution Using Spectral Fusion , 2006, MRCS.

[3]  Larry S. Davis,et al.  EigenGait: Motion-Based Recognition of People Using Image Self-Similarity , 2001, AVBPA.

[4]  N. Otsu,et al.  Action and simultaneous multiple-person identification using cubic higher-order local auto-correlation , 2004, ICPR 2004.

[5]  Yasushi Makihara,et al.  Gait Identification Based on Multi-view Observations Using Omnidirectional Camera , 2007, ACCV.

[6]  Koichi Shinoda,et al.  Robust Gait Recognition Against Speed Variation , 2010, 2010 20th International Conference on Pattern Recognition.

[7]  Rama Chellappa,et al.  Gait Analysis for Human Identification , 2003, AVBPA.

[8]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[9]  Rama Chellappa,et al.  Combining multiple evidences for gait recognition , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[10]  Nikolaos V. Boulgouris,et al.  Human gait recognition based on matching of body components , 2007, Pattern Recognit..

[11]  Yonghuai Liu,et al.  Improving ICP with easy implementation for free-form surface matching , 2004, Pattern Recognit..

[12]  Yaron Caspi,et al.  Under the supervision of , 2003 .

[13]  A. Murat Tekalp,et al.  Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time , 1997, IEEE Trans. Image Process..

[14]  Xuelong Li,et al.  Human Carrying Status in Visual Surveillance , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Bir Bhanu,et al.  Individual recognition using gait energy image , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Sudeep Sarkar,et al.  Simplest representation yet for gait recognition: averaged silhouette , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[17]  Mark S. Nixon,et al.  Automatic Gait Recognition via Fourier Descriptors of Deformable Objects , 2003, AVBPA.

[18]  Anuj Srivastava,et al.  Cyclostationary Processes on Shape Spaces for Gait-Based Recognition , 2006, ECCV.

[19]  Sudeep Sarkar,et al.  Improved gait recognition by gait dynamics normalization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Ryusuke Sagawa,et al.  Gait Volume : Spatio-Temporal Analysis of Walking , 2003 .

[22]  Yasushi Makihara,et al.  Gait Recognition Using a View Transformation Model in the Frequency Domain , 2006, ECCV.

[23]  Raymond S. T. Lee,et al.  Human Identification by Using the Motion and Static Characteristic of Gait , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[24]  Tomaso Poggio,et al.  Image Representations for Visual Learning , 1996, Science.

[25]  Marcus A. Magnor,et al.  View and Time Interpolation in Image Space , 2008, Comput. Graph. Forum.

[26]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Edward H. Adelson,et al.  Analyzing and recognizing walking figures in XYT , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Raymond S. T. Lee,et al.  A New Representation for Human Gait Recognition: Motion Silhouettes Image (MSI) , 2006, ICB.