Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

[1]  K. Steiglitz,et al.  An RC Impedance Approximant to s^{-1/2) , 1964 .

[2]  Susana Cardoso,et al.  MgO Magnetic Tunnel Junction Electrical Current Sensor With Integrated Ru Thermal Sensor , 2013, IEEE Transactions on Magnetics.

[3]  Guang Cheng,et al.  Modeling the frequency dependence of the electrical properties of the live human skull , 2009, Physiological measurement.

[4]  S. Cardoso,et al.  Electrical Characterization of a Magnetic Tunnel Junction Current Sensor for Industrial Applications , 2012, IEEE Transactions on Magnetics.

[5]  Susana Cardoso,et al.  A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor , 2011, Sensors.

[6]  Isabel S. Jesus,et al.  Fractional Electrical Impedances in Botanical Elements , 2008 .

[7]  I. Schäfer,et al.  Modelling of coils using fractional derivatives , 2006 .

[8]  B. T. Krishna,et al.  Active and Passive Realization of Fractance Device of Order 1/2 , 2008 .

[9]  B. Maundy,et al.  On a multivibrator that employs a fractional capacitor , 2009 .

[10]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[11]  A.E. Navarro,et al.  Extending Magnetoresistive AC Transfer Characteristics for Current Measurement , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[12]  Karabi Biswas,et al.  A constant phase element sensor for monitoring microbial growth , 2006 .

[13]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Ahmed S. Elwakil,et al.  First-Order Filters Generalized to the fractional Domain , 2008, J. Circuits Syst. Comput..

[15]  B. T. Krishna Studies on fractional order differentiators and integrators: A survey , 2011, Signal Process..

[16]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[17]  Rik W. De Doncker,et al.  Modeling the dynamic behavior of supercapacitors using impedance-spectroskopy , 2002 .

[18]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[19]  S. Westerlund Dead matter has memory , 1991 .

[20]  E. Karden,et al.  Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification , 1997 .

[21]  B. Kuttner,et al.  On Differences of Fractional Order , 1957 .

[22]  P. Ripka Electric current sensors: a review , 2010 .

[23]  K. B. Oldham,et al.  The replacement of Fick's laws by a formulation involving semidifferentiation , 1970 .

[24]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[25]  A. Kling,et al.  Ion beam deposition of Mn-Ir spin valves , 1999 .

[26]  R.W. De Doncker,et al.  Modeling the dynamic behavior of supercapacitors using impedance spectroscopy , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[27]  R. Coehoorn,et al.  Giant magnetoresistance and magnetic interactions in exchange-biased spin-valves , 2003 .

[28]  Bernard Dieny,et al.  Spin-valve effect in soft ferromagnetic sandwiches , 1991 .

[29]  V. Muralidharan,et al.  Warburg impedance ‐ basics revisited , 1997 .

[30]  Herminio Martínez,et al.  Fractional DC/DC converter in solar-powered electrical generation systems , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[31]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[32]  T. Sagara,et al.  Magnetoresistive Sensors , 1993, IEEE Translation Journal on Magnetics in Japan.

[33]  D. Grahame,et al.  Fiftieth Anniversary: Mathematical Theory of the Faradaic Admittance Pseudocapacity and Polarization Resistance , 1952 .

[34]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[35]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[36]  Keith B. Oldham,et al.  New approach to the solution of electrochemical problems involving diffusion , 1969 .