Low‐loss polycrystalline silicon waveguides for silicon photonics

Photonic integrated circuits in silicon require waveguiding through a material compatible with silicon very large scale integrated circuit technology. Polycrystalline silicon (poly‐Si), with a high index of refraction compared to SiO2 and air, is an ideal candidate for use in silicon optical interconnect technology. In spite of its advantages, the biggest hurdle to overcome in this technology is that losses of 350 dB/cm have been measured in as‐deposited bulk poly‐Si structures, as against 1 dB/cm losses measured in waveguides fabricated in crystalline silicon. We report methods for reducing scattering and absorption, which are the main sources of losses in this system. To reduce surface scattering losses we fabricate waveguides in smooth recrystallized amorphous silicon and chemomechanically polished poly‐Si, both of which reduce losses by about 40 dB/cm. Atomic force microscopy and spectrophotometry studies are used to monitor surface roughness, which was reduced from an rms value of 19–20 nm down to ab...