Evaluating uncertainties of future marine flooding occurrence as sea-level rises

As sea-level rises, the frequency of coastal marine flooding events is changing. For accurate assessments, several other factors must be considered as well, such as the variability of sea-level rise and storm surge patterns. Here, a global sensitivity analysis is used to provide quantitative insight into the relative importance of contributing uncertainties over the coming decades. The method is applied on an urban low-lying coastal site located in the north-western Mediterranean, where the yearly probability of damaging flooding could grow drastically after 2050 if sea-level rise follows IPCC projections. Storm surge propagation processes, then sea-level variability, and, later, global sea-level rise scenarios become successively important source of uncertainties over the 21st century. This defines research priorities that depend on the target period of interest. On the long term, scenarios RCP 6.0 and 8.0 challenge local capacities of adaptation for the considered site.

[1]  Marcello de Michele,et al.  Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? , 2013 .

[2]  Igor Linkov,et al.  Exploring vulnerability of coastal habitats to sea level rise through global sensitivity and uncertainty analyses , 2011, Environ. Model. Softw..

[3]  John Norton,et al.  An introduction to sensitivity assessment of simulation models , 2015, Environ. Model. Softw..

[4]  Marcel J. F. Stive,et al.  Climate-change impact assessment for inlet-interrupted coastlines , 2013 .

[5]  Aslak Grinsted,et al.  Reconstructing sea level from paleo and projected temperatures 200 to 2100AD , 2009 .

[6]  A. Cazenave,et al.  Sea-level rise by 2100. , 2013, Science.

[7]  Julien Jacques,et al.  Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..

[8]  Charles H. Fletcher,et al.  Doubling of coastal erosion under rising sea level by mid-century in Hawaii , 2015, Natural Hazards.

[9]  Patrice Dumas,et al.  Why are climate policies of the present decade so crucial for keeping the 2 °C target credible? , 2014, Climatic Change.

[10]  A. Cazenave,et al.  Sea level rise and its coastal impacts , 2014 .

[11]  A. Cazenave,et al.  Sea-Level Rise and Its Impact on Coastal Zones , 2010, Science.

[12]  Manuel Garcin,et al.  Anticipate response of climate change on coastal risks at regional scale in Aquitaine and Languedoc Roussillon (France) , 2009 .

[13]  Jérémy Rohmer,et al.  Development of an inverse method for coastal risk management , 2013 .

[14]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[15]  André B. Fortunato,et al.  Generating inundation maps for a coastal lagoon: A case study in the Ria de Aveiro (Portugal) , 2013 .

[16]  X. Collilieux,et al.  Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field , 2012 .

[17]  James Foster,et al.  Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin , 2007 .

[18]  Brian J. Williams,et al.  Sensitivity analysis when model outputs are functions , 2006, Reliab. Eng. Syst. Saf..

[19]  S. Hagen,et al.  Dynamics of sea level rise and coastal flooding on a changing landscape , 2014 .

[20]  Fabrice Ardhuin,et al.  Atmospheric storm surge modeling methodology along the French (Atlantic and English Channel) coast , 2014, Ocean Dynamics.

[21]  Melisa Menéndez,et al.  Changes in extreme high water levels based on a quasi‐global tide‐gauge data set , 2010 .

[22]  Nicole Lenotre,et al.  Quantifying Errors in Long-term Coastal Erosion and Inundation Hazard Assessments , 2011 .

[23]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[24]  C. Tebaldi,et al.  Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites , 2014 .

[25]  Nobuhito Mori,et al.  Projected changes in wave climate from a multi-model ensemble , 2013 .

[26]  Manuel Garcin,et al.  How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France) , 2015 .

[27]  Yann Balouin,et al.  Morphological response and coastal dynamics associated with major storm events along the Gulf of Lions Coastline, France , 2012 .

[28]  Ben Gouldby,et al.  The joint probability of waves and water levels in coastal engineering design , 2002 .

[29]  J. Hay,et al.  Coastal systems and low-lying areas , 2007 .

[30]  Catherine Meur-Ferec,et al.  ANR Miseeva, présentation des résultats Tâche 4.4 : Perception des risques (Palavas, Carnon, Mauguio) , 2010 .

[31]  Yann Balouin,et al.  The « storm network » as a participative network for monitoring the impacts of coastal storms along the littoral zone of the Gulf of Lions, France , 2013 .

[32]  M. Gervais,et al.  Impacts morphologiques des surcotes et vagues de tempêtes sur le littoral méditerranéen , 2012 .

[33]  R. Nicholls,et al.  Future flood losses in major coastal cities , 2013 .

[34]  M. Tamisiea,et al.  The moving boundaries of sea level change: understanding the origins of geographic variability , 2011 .

[35]  Emanuele Borgonovo,et al.  Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help? , 2014, Risk analysis : an official publication of the Society for Risk Analysis.

[36]  S. Rahmstorf,et al.  Global sea level linked to global temperature , 2009, Proceedings of the National Academy of Sciences.

[37]  Hilary F. Stockdon,et al.  Empirical parameterization of setup, swash, and runup , 2006 .

[38]  Igor Linkov,et al.  A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion, and nourishment , 2014, Environ. Model. Softw..

[39]  Manuel Garcin,et al.  MISEEVA: set up of a transdisciplinary approach to assess vulnerability of the coastal zone to marine inundation at regional and local scale, within a global change context. , 2010 .

[40]  Hélène Rey-Valette,et al.  Valuing welfare impacts of climate change in coastal areas: a French case study , 2015 .

[41]  Sebastiaan N. Jonkman,et al.  Risk to life due to flooding in post-Katrina New Orleans , 2012 .

[42]  Shuangzhe Liu,et al.  Global Sensitivity Analysis: The Primer by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola , 2008 .

[43]  Stefano Tarantola,et al.  Global Sensitivity Analysis: An Introduction , 2005 .

[44]  S. Rahmstorf Response to Comments on "A Semi-Empirical Approach to Projecting Future Sea-Level Rise" , 2007, Science.

[45]  Robert J. Nicholls,et al.  Sea‐level scenarios for evaluating coastal impacts , 2014 .

[46]  D. Stammer,et al.  Projecting twenty-first century regional sea-level changes , 2014, Climatic Change.

[47]  Rodrigo Pedreros,et al.  Coastal flooding of urban areas by overtopping: dynamic modelling application to the Johanna storm (2008) in Gâvres (France) , 2014 .

[48]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[49]  Jonathan A. Tawn,et al.  Estimating probabilities of extreme sea-levels , 1992 .

[50]  H. Storch,et al.  Changing North Sea storm surge climate: An increasing hazard? , 2012 .

[51]  Manuel Garcin,et al.  Evolution of coastal zone vulnerability to marine inundation in a global change context. Application to Languedoc Roussillon (France) , 2011 .

[52]  Marcel Zijlema,et al.  SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coas , 2011 .

[53]  Pierre Fabrie,et al.  Evaluation of well‐balanced bore‐capturing schemes for 2D wetting and drying processes , 2007 .

[54]  Manuel Garcin,et al.  An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales , 2013 .

[55]  P. Bates,et al.  A probabilistic methodology to estimate future coastal flood risk due to sea level rise , 2008 .

[56]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[57]  John Douglas,et al.  Weighing the importance of model uncertainty against parameter uncertainty in earthquake loss assessments , 2014 .

[58]  Melisa Menéndez,et al.  Evidence for Century-Timescale Acceleration in Mean Sea Levels and for Recent Changes in Extreme Sea Levels , 2011 .

[59]  Jérôme Thiebot,et al.  Vulnerability of sandy coasts to climate variability , 2013 .

[60]  Sankaran Mahadevan,et al.  Separating the contributions of variability and parameter uncertainty in probability distributions , 2013, Reliab. Eng. Syst. Saf..

[61]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[62]  Stephane Hallegatte,et al.  Strategies to adapt to an uncertain climate change , 2008 .

[63]  Hélène Rey-Valette,et al.  Second-home owners and sea-level rise: the case of the Languedoc-Roussillon region (France) , 2015 .

[64]  Thierry Alex Mara,et al.  Variance-based sensitivity indices for models with dependent inputs , 2012, Reliab. Eng. Syst. Saf..

[65]  Albin Ullmann,et al.  Surcotes dans le Golfe du Lion et conditions atmosphériques: variabilité contemporaine et future (1900-2100) , 2008 .

[66]  Anny Cazenave,et al.  Causes for contemporary regional sea level changes. , 2013, Annual review of marine science.

[67]  Anny Cazenave,et al.  Sea level: A review of present-day and recent-past changes and variability , 2012 .

[68]  Andrea Saltelli,et al.  Sensitivity analysis didn't help. A practitioner's critique of the Stern review , 2010 .

[69]  K. Horsburgh,et al.  The impact of future sea-level rise on the European Shelf tides , 2012 .

[70]  Anny Cazenave,et al.  An Assessment of Two-Dimensional Past Sea Level Reconstructions Over 1950–2009 Based on Tide-Gauge Data and Different Input Sea Level Grids , 2012, Surveys in Geophysics.

[71]  S. Hanson,et al.  A global ranking of port cities with high exposure to climate extremes , 2011 .

[72]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[73]  M. Jansen Analysis of variance designs for model output , 1999 .

[74]  Stephan T. Grilli,et al.  A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation , 2012 .

[75]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[76]  Fabrice Gamboa,et al.  Sensitivity analysis for multidimensional and functional outputs , 2013, 1311.1797.

[77]  T. Lenton,et al.  2 °C or not 2 °C? That is the climate question , 2011, Nature.

[78]  Aslak Grinsted,et al.  Upper limit for sea level projections by 2100 , 2014 .

[79]  Robert J. Nicholls,et al.  Island abandonment and sea-level rise: An historical analog from the Chesapeake Bay, USA , 2006 .

[80]  Céline Guivarch,et al.  2°C or Not 2°C? , 2013 .

[81]  M. Schlesinger,et al.  Robust Strategies for Abating Climate Change , 2000 .

[82]  Celine Guivarch,et al.  2C or Not 2C? , 2012 .

[83]  J. Kerman A closed-form approximation for the median of the beta distribution , 2011, 1111.0433.