A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In practice, such algorithms heavily rely on warm start or parameter tuning to display convergence behavior; in theory, convergence is not guaranteed for nonconvex network optimization problems like AC OPF. In order to overcome such difficulties, we propose a new distributed reformulation for AC OPF and a two-level ADMM algorithm that goes beyond the standard framework of ADMM. We establish the global convergence and iteration complexity of the proposed algorithm under mild assumptions. Extensive numerical experiments over some largest NESTA test cases (9000- and 13000-bus systems) demonstrate advantages of the proposed algorithm over existing ADMM variants in terms of convergence, scalability, and robustness. Moreover, under appropriate parallel implementation, the proposed algorithm exhibits fast convergence comparable to or even better than the state-of-the-art centralized solver.

[1]  Tomaso Erseghe,et al.  Distributed Optimal Power Flow Using ADMM , 2014, IEEE Transactions on Power Systems.

[2]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[3]  Sleiman Mhanna,et al.  Adaptive ADMM for Distributed AC Optimal Power Flow , 2019, IEEE Transactions on Power Systems.

[4]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[5]  Shiqian Ma,et al.  Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis , 2016, Computational Optimization and Applications.

[6]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[7]  X. Andy Sun,et al.  A two-level distributed algorithm for nonconvex constrained optimization , 2019, Computational Optimization and Applications.

[8]  K. Fujisawa,et al.  Semidefinite programming for optimal power flow problems , 2008 .

[9]  Daniel Bienstock,et al.  Strong NP-hardness of AC power flows feasibility , 2019, Oper. Res. Lett..

[10]  Soumyadip Ghosh,et al.  Fully decentralized AC optimal power flow algorithms , 2013, 2013 IEEE Power & Energy Society General Meeting.

[11]  KarypisGeorge,et al.  Multilevelk-way Partitioning Scheme for Irregular Graphs , 1998 .

[12]  Carleton Coffrin,et al.  NESTA, The NICTA Energy System Test Case Archive , 2014, ArXiv.

[13]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[14]  Santanu S. Dey,et al.  Strong SOCP Relaxations for the Optimal Power Flow Problem , 2015, Oper. Res..

[15]  Henrik Sandberg,et al.  A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems , 2017, IEEE Transactions on Smart Grid.

[16]  Hong-Kun Xu,et al.  Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems , 2014, 1410.8625.

[17]  Tomaso Erseghe A distributed approach to the OPF problem , 2015, EURASIP J. Adv. Signal Process..

[18]  R. Jabr,et al.  A Primal-Dual Interior Point Method for Optimal Power Flow Dispatching , 2002, IEEE Power Engineering Review.

[19]  Shabbir Ahmed,et al.  Exact augmented Lagrangian duality for mixed integer linear programming , 2017, Math. Program..

[20]  M. Hestenes Multiplier and gradient methods , 1969 .

[21]  Pascal Van Hentenryck,et al.  AC-Feasibility on Tree Networks is NP-Hard , 2014, IEEE Transactions on Power Systems.

[22]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[23]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[24]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[25]  R. Jabr Radial distribution load flow using conic programming , 2006, IEEE Transactions on Power Systems.

[26]  X. A. Sun,et al.  A two-level distributed algorithm for general constrained non-convex optimization with global convergence , 2019 .

[27]  Zhi-Quan Luo,et al.  Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints , 1996, Math. Program..

[28]  Javad Lavaei,et al.  Geometry of Power Flows and Optimization in Distribution Networks , 2012, IEEE Transactions on Power Systems.