Parameterization-free active contour models with topology control

We present a novel approach for representing and evolving deformable active contours by restricting the movement of the contour vertices to the grid lines of a uniform lattice. This restriction implicitly controls the (re)parameterization of the contour and hence makes it possible to employ parameterization-independent evolution rules. Moreover, the underlying uniform grid makes self-collision detection very efficient. Our contour model is also able to perform topology changes, but – more importantly – it can detect and handle self-collisions at subpixel precision. In applications where topology changes are not appropriate, we generate contours that touch themselves without any gaps or self-intersections.

[1]  Jacques-Olivier Lachaud,et al.  Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction , 1999, Medical Image Anal..

[2]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[3]  Demetri Terzopoulos,et al.  Topology adaptive deformable surfaces for medical image volume segmentation , 1999, IEEE Transactions on Medical Imaging.

[4]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[5]  ISAAC COHEN,et al.  Using deformable surfaces to segment 3-D images and infer differential structures , 1992, CVGIP Image Underst..

[6]  M. Gage On an area-preserving evolution equation for plane curves , 1986 .

[7]  Marie-Odile Berger Snake growing , 1990, ECCV.

[8]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[9]  Johan Montagnat,et al.  Shape and Topology Constraints on Parametric Active Contours , 2001, Comput. Vis. Image Underst..

[10]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[11]  Jerry L. Prince,et al.  An active contour model for mapping the cortex , 1995, IEEE Trans. Medical Imaging.

[12]  Robert M. O'Bara,et al.  Geometrically deformed models: a method for extracting closed geometric models form volume data , 1991, SIGGRAPH.

[13]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[14]  Dimitris N. Metaxas,et al.  Blended deformable models , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Benjamin B. Kimia,et al.  On the evolution of curves via a function of curvature , 1992 .

[16]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[18]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[19]  A. Gupta,et al.  Segmentation and tracking of cine cardiac MR and CT images using a 3-D deformation model , 1994, Computers in Cardiology 1994.

[20]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Gábor Székely,et al.  Tamed Snake: A Particle System for Robust Semi-automatic Segmentation , 1999, MICCAI.

[22]  Françoise J. Prêteux,et al.  Directional adaptive deformable models for segmentation , 1998, J. Electronic Imaging.

[23]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[24]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[25]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[26]  Xiao Han,et al.  A topology preserving deformable model using level sets , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[28]  Max A. Viergever,et al.  A discrete dynamic contour model , 1995, IEEE Trans. Medical Imaging.