Coupling Stokes--Darcy Flow with Transport

A mathematical and numerical model describing chemical transport in a Stokes–Darcy flow system is discussed. The flow equations are solved through domain decomposition using classical finite element methods in the Stokes region and mixed finite element methods in the Darcy region. The local discontinuous Galerkin (LDG) method is used to solve the transport equation. Models dealing with coupling between Stokes and Darcy equations have been extensively discussed in the literature. This paper focuses on the approximation of the transport equation. Stability of the LDG scheme is analyzed, and an a priori error estimate is proved. Several numerical examples verifying the theory and illustrating the capabilities of the method are presented.

[1]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[2]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[3]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[4]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[5]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[6]  Clinton N Dawson,et al.  A priori error estimates for interior penalty versions of the local discontinuous Galerkin method applied to transport equations , 2001 .

[7]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[8]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[9]  Ricardo H. Nochetto,et al.  Weighted inf-sup condition and pointwise error estimates for the Stokes problem , 1990 .

[10]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[11]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[12]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[13]  J. Douglas,et al.  Prismatic mixed finite elements for second order elliptic problems , 1989 .

[14]  Clinton N Dawson,et al.  Conservative, shock-capturing transport methods with nonconservative velocity approximations , 1999 .

[15]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[16]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[17]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[18]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[19]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[20]  Mary F. Wheeler,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media , 2005, SIAM J. Numer. Anal..

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[23]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[24]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[27]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[28]  M. Wheeler,et al.  Discontinuous Galerkin methods for coupled flow and reactive transport problems , 2005 .

[29]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[30]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[31]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[32]  Clint Dawson,et al.  Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .

[33]  Bernardo Cockburn,et al.  The local discontinuous Galerkin method for contaminant transport , 2000 .

[34]  Hussein Hoteit,et al.  New two‐dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes , 2004 .