Smooth muscle contributes to the development and function of a layered intestinal stem cell niche.

[1]  P. Katajisto,et al.  Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage , 2021, Nature Communications.

[2]  J. Marioni,et al.  Cells of the human intestinal tract mapped across space and time , 2021, Nature.

[3]  D. Winton,et al.  Bone Morphogenetic Protein Pathway Antagonism by Grem1 Regulates Epithelial Cell Fate in Intestinal Regeneration , 2021, Gastroenterology.

[4]  N. Ashley,et al.  Spatiotemporal analysis of human intestinal development at single-cell resolution , 2021, Cell.

[5]  K. Basler,et al.  Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis , 2020, PLoS biology.

[6]  I. Glass,et al.  Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. , 2020, Cell stem cell.

[7]  R. Shivdasani,et al.  Cellular and molecular architecture of the intestinal stem cell niche , 2020, Nature Cell Biology.

[8]  Guocheng Yuan,et al.  Distinct Mesenchymal Cell Populations Generate the Essential Intestinal BMP Signaling Gradient. , 2020, Cell stem cell.

[9]  S. Teichmann,et al.  Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn’s Disease , 2020, bioRxiv.

[10]  Guoji Guo,et al.  Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches , 2020, Nature Communications.

[11]  D. Sprinzak,et al.  Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development , 2019, Cell.

[12]  Charles A. Harris,et al.  A Stromal Niche Defined by Expression of the Transcription Factor WT1 Mediates Programming and Homeostasis of Cavity-Resident Macrophages. , 2019, Immunity.

[13]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[14]  M. Verzi,et al.  A reinforcing HNF4-SMAD4 feed-forward module stabilizes enterocyte identity , 2019, Nature Genetics.

[15]  Quin F. Wills,et al.  Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease , 2018, Cell.

[16]  D. Virshup,et al.  Intrinsic Xenobiotic Resistance of the Intestinal Stem Cell Niche. , 2018, Developmental cell.

[17]  B. Hogan,et al.  Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation , 2018, Development.

[18]  T. Lechler,et al.  Morphogenesis and Compartmentalization of the Intestinal Crypt. , 2018, Developmental cell.

[19]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[20]  K. Sigmundsson,et al.  PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo , 2018, Proceedings of the National Academy of Sciences.

[21]  S. Itzkovitz,et al.  Subepithelial telocytes are an important source of Wnts that supports intestinal crypts , 2018, Nature.

[22]  Z. J. Huang,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[23]  D. Radenkovic,et al.  Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells , 2017, Journal of cellular and molecular medicine.

[24]  R. Adams,et al.  Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1 , 2017, Nature Communications.

[25]  S. Ward,et al.  Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures , 2017, PloS one.

[26]  C. Tabin,et al.  BMP signaling controls buckling forces to modulate looping morphogenesis of the gut , 2017, Proceedings of the National Academy of Sciences.

[27]  P. Sansonetti,et al.  CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury , 2017, Proceedings of the National Academy of Sciences.

[28]  Bing Zhao,et al.  BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes , 2017, Nature Communications.

[29]  R. Flavell,et al.  Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. , 2016, Differentiation; research in biological diversity.

[30]  T. Petrova,et al.  High-resolution 3D analysis of mouse small-intestinal stroma , 2016, Nature Protocols.

[31]  J. Osborne,et al.  Paneth Cell-Rich Regions Separated by a Cluster of Lgr5+ Cells Initiate Crypt Fission in the Intestinal Stem Cell Niche , 2016, PLoS biology.

[32]  S. Schnell,et al.  Villification in the mouse: Bmp signals control intestinal villus patterning , 2016, Development.

[33]  S. Durinck,et al.  Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function , 2015, Nature.

[34]  M. Bansal,et al.  Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche , 2014, Nature Medicine.

[35]  J. Rossant,et al.  Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts , 2014, Development.

[36]  Tetsuya Nakamura,et al.  Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury , 2013, Cell stem cell.

[37]  David L. Kaplan,et al.  Villification: How the Gut Gets Its Villi , 2013, Science.

[38]  H. Clevers The Intestinal Crypt, A Prototype Stem Cell Compartment , 2013, Cell.

[39]  Hans Clevers,et al.  Primary mouse small intestinal epithelial cell cultures. , 2013, Methods in molecular biology.

[40]  H. Clevers,et al.  Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. , 2012, Gastroenterology.

[41]  S. Crețoiu,et al.  Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. , 2012, Histology and histopathology.

[42]  S. Ward,et al.  Platelet-derived growth factor receptor α-positive cells in the tunica muscularis of human colon , 2012, Journal of cellular and molecular medicine.

[43]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[44]  R. Shivdasani,et al.  Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells , 2012, Proceedings of the National Academy of Sciences.

[45]  A. Oudenaarden,et al.  Optimality in the Development of Intestinal Crypts , 2012, Cell.

[46]  J. Flanagan,et al.  RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. , 2012, The Journal of molecular diagnostics : JMD.

[47]  J. Spence,et al.  Vertebrate intestinal endoderm development , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  Xin Chen,et al.  Mesenchymal cells of the intestinal lamina propria. , 2011, Annual review of physiology.

[49]  C. Antonescu,et al.  ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours , 2010, Nature.

[50]  Maria-Simonetta Faussone-Pellegrini,et al.  TELOCYTES – a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES , 2010, Journal of cellular and molecular medicine.

[51]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[52]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[53]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[54]  M. Seto,et al.  An in vivo reporter of BMP signaling in organogenesis reveals targets in the developing kidney , 2008, BMC Developmental Biology.

[55]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[56]  Suet Yi Leung,et al.  Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors , 2007, Proceedings of the National Academy of Sciences.

[57]  B. Hinz,et al.  Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells , 2007, Nature Immunology.

[58]  Nathalie Perreault,et al.  Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. , 2007, Gastroenterology.

[59]  K. Furuya,et al.  Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. , 2007, International review of cytology.

[60]  D Brent Polk,et al.  Bmp signaling is required for intestinal growth and morphogenesis , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[61]  P. Adegboyega,et al.  Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[62]  Ossama Tawfik,et al.  BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling , 2004, Nature Genetics.

[63]  Hans Clevers,et al.  De Novo Crypt Formation and Juvenile Polyposis on BMP Inhibition in Mouse Intestine , 2004, Science.

[64]  Philippe Soriano,et al.  Evolutionary Divergence of Platelet-Derived Growth Factor Alpha Receptor Signaling Mechanisms , 2003, Molecular and Cellular Biology.

[65]  R. Lorenz,et al.  The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota , 2001, Cellular microbiology.

[66]  C. Betsholtz,et al.  Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. , 2000, Development.

[67]  A. Mulberg,et al.  Development of the human gastrointestinal tract: twenty years of progress. , 1999, Gastroenterology.

[68]  T. Kanda,et al.  Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells , 1998, Current Biology.

[69]  D. Newgreen,et al.  Origin of interstitial cells of Cajal in the mouse intestine. , 1996, Developmental biology.

[70]  G. Gabella,et al.  Origin of the c-kit-positive interstitial cells in the avian bowel. , 1996, Development.

[71]  J. Gordon,et al.  Paneth cell differentiation in the developing intestine of normal and transgenic mice. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S Torihashi,et al.  Mutation of the proto‐oncogene c‐kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. , 1994, The Journal of physiology.

[73]  P. Pothier,et al.  Migration of fetal intestinal intervillous cells in neonatal mice , 1990, The Anatomical record.

[74]  B. Ponder,et al.  Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. , 1988, Development.

[75]  N. Joyce,et al.  Morphologic and biochemical evidence for a contractile cell network within the rat intestinal mucosa. , 1987, Gastroenterology.

[76]  J. W. Osborne,et al.  Crypt fission and crypt number in the small and large bowel of postnatal rats * , 1985, Cell and tissue kinetics.

[77]  M. Bjerknes,et al.  Whole population cell kinetics and postnatal development of the mouse intestinal epithelium , 1985, The Anatomical record.

[78]  N. Wright,et al.  Cell kinetics in the mouse small intestine during immediate postnatal life , 1982, Virchows Archiv. B, Cell pathology including molecular pathology.

[79]  A. Maskens,et al.  KINETICS OF TISSUE PROLIFERATION IN COLORECTAL MUCOSA DURING POST‐NATAL GROWTH , 1981, Cell and tissue kinetics.