Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport
暂无分享,去创建一个
[1] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[2] Emmanuel Franck,et al. An asymptotic preserving scheme for P1 model using classical diffusion schemes on unstructured polygonal meshes , 2011 .
[3] Thomas A. Brunner,et al. Forms of Approximate Radiation Transport , 2002 .
[4] Philippe G. LeFloch,et al. Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations , 2010, Math. Comput..
[5] Shi Jin,et al. The discrete-ordinate method in diffusive regimes , 1991 .
[6] Bruno Després,et al. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..
[7] E. Franck,et al. An asymptotic preserving scheme with the maximum principle for the model on distorded meshes , 2012 .
[8] J. Watteau. La fusion thermonucléaire inertielle par laser , 1994 .
[9] Jean-Paul Vila,et al. Convergence d'un schéma volumes finis explicite en temps pour les systèmes hyperboliques linéaires symétriques en domaines bornés , 2000 .
[10] Božidar Šarler,et al. Local Collocation Approach for Solving Turbulent Combined Forced and Natural Convection Problems , 2011 .
[11] James Paul Holloway,et al. Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .
[12] Ryan G. McClarren,et al. Positive PN Closures , 2010, SIAM J. Sci. Comput..
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[15] L. Evans,et al. Partial Differential Equations , 1941 .
[16] T. Brunner,et al. Riemann solvers for time-dependent transport based on the maximum entropy and spherical harmonics closures , 2000 .
[17] Christophe Berthon,et al. Asymptotic preserving HLL schemes , 2011 .
[18] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[19] Philippe G. LeFloch,et al. Late-time relaxation limits of nonlinear hyperbolic systems. A general framework , 2010 .
[20] C. Berthon,et al. A Free Streaming Contact Preserving Scheme for the M 1 Model , 2010 .
[21] Donatella Donatelli,et al. Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems , 2002, math/0207173.
[22] Laurent Gosse,et al. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension , 2012 .
[23] N. Crouseilles,et al. An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .
[24] Jérôme Breil,et al. A cell-centered diffusion scheme on two-dimensional unstructured meshes , 2007, J. Comput. Phys..
[25] Laurent Gosse,et al. Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Case's elementary solutions , 2011 .
[26] Laurent Gosse,et al. An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .
[27] E. Franck,et al. Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes , 2010 .
[28] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[29] E. Franck,et al. Asymptotic Preserving Finite Volumes Discretization For Non-Linear Moment Model On Unstructured Meshes , 2011 .
[30] P. Raviart,et al. GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .
[31] Pierre-Henri Maire,et al. Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .
[32] Nicolas Crouseilles,et al. A dynamic multi-scale model for transient radiative transfer calculations , 2013 .
[33] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[34] Bruno Després,et al. Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.
[35] M. Darwish,et al. The Finite Volume Method , 2016 .
[36] S. Mancini,et al. DIFFUSION LIMIT OF THE LORENTZ MODEL: ASYMPTOTIC PRESERVING SCHEMES , 2002 .
[37] Pierre Charrier,et al. An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions , 2007, J. Sci. Comput..
[38] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[39] I. Aavatsmark,et al. Numerical convergence of the MPFA O‐method and U‐method for general quadrilateral grids , 2006 .
[40] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[41] Martin Frank,et al. Diffusive Corrections to PN Approximations , 2009, Multiscale Model. Simul..
[42] C. D. Levermore,et al. Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .