Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport

In this paper we propose an asymptotic preserving scheme for a family of Friedrichs systems on unstructured meshes based on a decomposition between the hyperbolic heat equation and a linear hyperbolic which not involved in the diffusive regime. For the hyperbolic heat equation we use asymptotic preserving schemes recently designed in [7]–[20]. To discretize the second part we use classical Rusanov or upwind schemes. To finish we apply this method for the discretization of the $$P_N$$PN and $$S_N$$SN models which are widely used in transport codes.

[1]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[2]  Emmanuel Franck,et al.  An asymptotic preserving scheme for P1 model using classical diffusion schemes on unstructured polygonal meshes , 2011 .

[3]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[4]  Philippe G. LeFloch,et al.  Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations , 2010, Math. Comput..

[5]  Shi Jin,et al.  The discrete-ordinate method in diffusive regimes , 1991 .

[6]  Bruno Després,et al.  Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..

[7]  E. Franck,et al.  An asymptotic preserving scheme with the maximum principle for the model on distorded meshes , 2012 .

[8]  J. Watteau La fusion thermonucléaire inertielle par laser , 1994 .

[9]  Jean-Paul Vila,et al.  Convergence d'un schéma volumes finis explicite en temps pour les systèmes hyperboliques linéaires symétriques en domaines bornés , 2000 .

[10]  Božidar Šarler,et al.  Local Collocation Approach for Solving Turbulent Combined Forced and Natural Convection Problems , 2011 .

[11]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[12]  Ryan G. McClarren,et al.  Positive PN Closures , 2010, SIAM J. Sci. Comput..

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[15]  L. Evans,et al.  Partial Differential Equations , 1941 .

[16]  T. Brunner,et al.  Riemann solvers for time-dependent transport based on the maximum entropy and spherical harmonics closures , 2000 .

[17]  Christophe Berthon,et al.  Asymptotic preserving HLL schemes , 2011 .

[18]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[19]  Philippe G. LeFloch,et al.  Late-time relaxation limits of nonlinear hyperbolic systems. A general framework , 2010 .

[20]  C. Berthon,et al.  A Free Streaming Contact Preserving Scheme for the M 1 Model , 2010 .

[21]  Donatella Donatelli,et al.  Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems , 2002, math/0207173.

[22]  Laurent Gosse,et al.  Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension , 2012 .

[23]  N. Crouseilles,et al.  An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. , 2011 .

[24]  Jérôme Breil,et al.  A cell-centered diffusion scheme on two-dimensional unstructured meshes , 2007, J. Comput. Phys..

[25]  Laurent Gosse,et al.  Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Case's elementary solutions , 2011 .

[26]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .

[27]  E. Franck,et al.  Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes , 2010 .

[28]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[29]  E. Franck,et al.  Asymptotic Preserving Finite Volumes Discretization For Non-Linear Moment Model On Unstructured Meshes , 2011 .

[30]  P. Raviart,et al.  GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .

[31]  Pierre-Henri Maire,et al.  Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .

[32]  Nicolas Crouseilles,et al.  A dynamic multi-scale model for transient radiative transfer calculations , 2013 .

[33]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[34]  Bruno Després,et al.  Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.

[35]  M. Darwish,et al.  The Finite Volume Method , 2016 .

[36]  S. Mancini,et al.  DIFFUSION LIMIT OF THE LORENTZ MODEL: ASYMPTOTIC PRESERVING SCHEMES , 2002 .

[37]  Pierre Charrier,et al.  An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions , 2007, J. Sci. Comput..

[38]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[39]  I. Aavatsmark,et al.  Numerical convergence of the MPFA O‐method and U‐method for general quadrilateral grids , 2006 .

[40]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[41]  Martin Frank,et al.  Diffusive Corrections to PN Approximations , 2009, Multiscale Model. Simul..

[42]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .