Cell wall structure and function in lactic acid bacteria

The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.

[1]  S. D. De Keersmaecker,et al.  Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine , 2011, Microbial biotechnology.

[2]  S. Dramsi,et al.  Pili of gram-positive bacteria: roles in host colonization. , 2012, Research in microbiology.

[3]  P. Cossart,et al.  Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence , 2002, Molecular microbiology.

[4]  M. Washington,et al.  Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. , 2007, Gastroenterology.

[5]  G. Buist,et al.  Functionality of Sortase A in Lactococcus lactis , 2010, Applied and Environmental Microbiology.

[6]  Y. Le Loir,et al.  Influence of Lipoteichoic Acid d-Alanylation on Protein Secretion in Lactococcus lactis as Revealed by Random Mutagenesis , 2004, Applied and Environmental Microbiology.

[7]  M. van Heel,et al.  Structure, Adsorption to Host, and Infection Mechanism of Virulent Lactococcal Phage p2 , 2013, Journal of Virology.

[8]  S. D. De Keersmaecker,et al.  Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG , 2012, Microbial Cell Factories.

[9]  V. Dupres,et al.  Stretching polysaccharides on live cells using single molecule force spectroscopy , 2009, Nature Protocols.

[10]  O. Schneewind,et al.  Determinants of Murein Hydrolase Targeting to Cross-wall of Staphylococcus aureus Peptidoglycan* , 2012, The Journal of Biological Chemistry.

[11]  P. Renault,et al.  A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus‐to‐rod transition and filamentation in ovococci , 2011, Molecular microbiology.

[12]  M. Chapot-Chartier,et al.  Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages , 2014, Front. Microbiol..

[13]  W. Sandine,et al.  The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide , 1990, Applied and environmental microbiology.

[14]  Wenjun Zhao,et al.  Lesions in Teichoic Acid Biosynthesis in Staphylococcus aureus Lead to a Lethal Gain of Function in the Otherwise Dispensable Pathway , 2006, Journal of bacteriology.

[15]  C. Cambillau,et al.  Differences in Lactococcal Cell Wall Polysaccharide Structure Are Major Determining Factors in Bacteriophage Sensitivity , 2014, mBio.

[16]  S. Kulakauskas,et al.  A Novel Type of Peptidoglycan-binding Domain Highly Specific for Amidated d-Asp Cross-bridge, Identified in Lactobacillus casei Bacteriophage Endolysins* , 2013, The Journal of Biological Chemistry.

[17]  O. Schneewind,et al.  Cross-Linked Peptidoglycan Mediates Lysostaphin Binding to the Cell Wall Envelope of Staphylococcus aureus , 2006, Journal of bacteriology.

[18]  Anton Steen,et al.  LysM, a widely distributed protein motif for binding to (peptido)glycans , 2008, Molecular microbiology.

[19]  M. Kleerebezem,et al.  GtfA and GtfB Are Both Required for Protein O-Glycosylation in Lactobacillus plantarum , 2014, Journal of bacteriology.

[20]  Jan Kok,et al.  Different subcellular locations of secretome components of Gram-positive bacteria. , 2006, Microbiology.

[21]  C. Hill Virulence or Niche Factors: What's in a Name? , 2012, Journal of bacteriology.

[22]  J. Kok,et al.  Anchoring of proteins to lactic acid bacteria , 1999, Antonie van Leeuwenhoek.

[23]  T. Vernet,et al.  Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane , 2011, The EMBO journal.

[24]  G. LaPointe,et al.  Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. , 2005, Microbiology.

[25]  S. Ehrlich,et al.  Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition , 1997, Journal of bacteriology.

[26]  Anjali Mandlik,et al.  Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. , 2008, Trends in microbiology.

[27]  Nathalie T. Reichmann,et al.  Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes , 2011, FEMS microbiology letters.

[28]  C. Gross,et al.  From the regulation of peptidoglycan synthesis to bacterial growth and morphology , 2011, Nature Reviews Microbiology.

[29]  Wolfgang Ludwig,et al.  Taxonomy of Lactic Acid Bacteria , 1994 .

[30]  M. Yvon,et al.  Cheese flavour formation by amino acid catabolism , 2001 .

[31]  B. Dijkstra,et al.  AcmD, a Homolog of the Major Autolysin AcmA of Lactococcus lactis, Binds to the Cell Wall and Contributes to Cell Separation and Autolysis , 2013, PloS one.

[32]  Nathalie T. Reichmann,et al.  Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria , 2013, Microbiology.

[33]  W. Holzapfel,et al.  Lactic acid bacteria of foods and their current taxonomy. , 1997, International journal of food microbiology.

[34]  M. Kleerebezem,et al.  Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria , 2006, BMC Genomics.

[35]  M. Kleerebezem,et al.  The Major Autolysin Acm2 from Lactobacillus plantarum Undergoes Cytoplasmic O-Glycosylation , 2011, Journal of bacteriology.

[36]  T. Matsuguchi,et al.  Lipoteichoic Acids from Lactobacillus Strains Elicit Strong Tumor Necrosis Factor Alpha-Inducing Activities in Macrophages through Toll-Like Receptor 2 , 2003, Clinical Diagnostic Laboratory Immunology.

[37]  J. Chatel,et al.  Engineering lactococci and lactobacilli for human health. , 2013, Current opinion in microbiology.

[38]  Terry Roemer,et al.  Identification and in vitro Analysis of the GatD/MurT Enzyme-Complex Catalyzing Lipid II Amidation in Staphylococcus aureus , 2012, PLoS pathogens.

[39]  B. Poolman,et al.  Efficient Overproduction of Membrane Proteins in Lactococcus lactis Requires the Cell Envelope Stress Sensor/Regulator Couple CesSR , 2011, PloS one.

[40]  T. Watanabe,et al.  Structure of polysaccharide-peptidoglycan complex from the cell wall of Lactobacillus casei YIT9018. , 1990, Journal of biochemistry.

[41]  Bernard Decaris,et al.  Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. , 2008, Research in microbiology.

[42]  Paulette Charlier,et al.  The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[43]  P. Langella,et al.  Characterization of O-Acetylation of N-Acetylglucosamine , 2011, The Journal of Biological Chemistry.

[44]  P. Courtin,et al.  Clostridium difficile Has an Original Peptidoglycan Structure with a High Level of N-Acetylglucosamine Deacetylation and Mainly 3-3 Cross-links* , 2011, The Journal of Biological Chemistry.

[45]  E. Gaynor,et al.  Peptidoglycan hydrolases, bacterial shape, and pathogenesis. , 2013, Current opinion in microbiology.

[46]  S. Foster,et al.  Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. , 2000, Microbiology.

[47]  H. Neve,et al.  The Lactococcal Phages Tuc2009 and TP901-1 Incorporate Two Alternate Forms of Their Tail Fiber into Their Virions for Infection Specialization* , 2013, The Journal of Biological Chemistry.

[48]  M. Kleerebezem,et al.  d-Alanyl Ester Depletion of Teichoic Acids in Lactobacillus plantarum Results in a Major Modification of Lipoteichoic Acid Composition and Cell Wall Perforations at the Septum Mediated by the Acm2 Autolysin , 2006, Journal of bacteriology.

[49]  T. Alatossava,et al.  The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808 , 2013, Front. Microbiol..

[50]  W. D. de Vos,et al.  Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells , 2011, Applied and Environmental Microbiology.

[51]  J. Sekiguchi,et al.  Identification and Characterization of a Novel Polysaccharide Deacetylase C (PdaC) from Bacillus subtilis* , 2012, The Journal of Biological Chemistry.

[52]  C. Cambillau,et al.  Molecular Insights on the Recognition of a Lactococcus lactis Cell Wall Pellicle by the Phage 1358 Receptor Binding Protein , 2014, Journal of Virology.

[53]  P. Zuber Spx-RNA Polymerase Interaction and Global Transcriptional Control during Oxidative Stress , 2004, Journal of bacteriology.

[54]  E. Brown,et al.  Studies of the Genetics, Function, and Kinetic Mechanism of TagE, the Wall Teichoic Acid Glycosyltransferase in Bacillus subtilis 168 , 2011, The Journal of Biological Chemistry.

[55]  A. Tomasz,et al.  Identification of Genetic Determinants and Enzymes Involved with the Amidation of Glutamic Acid Residues in the Peptidoglycan of Staphylococcus aureus , 2012, PLoS pathogens.

[56]  J. Wells Immunomodulatory mechanisms of lactobacilli , 2011, Microbial cell factories.

[57]  M. Perego,et al.  Incorporation of D-Alanine into Lipoteichoic Acid and Wall Teichoic Acid in Bacillus subtilis , 1995, The Journal of Biological Chemistry.

[58]  A. Tomasz,et al.  The pgdA Gene Encodes for a PeptidoglycanN-Acetylglucosamine Deacetylase in Streptococcus pneumoniae * , 2000, The Journal of Biological Chemistry.

[59]  G. Widmalm,et al.  Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). , 2002, Biomacromolecules.

[60]  Michael Erkelenz,et al.  SpxB Regulates O-Acetylation-dependent Resistance of Lactococcus lactis Peptidoglycan to Hydrolysis* , 2007, Journal of Biological Chemistry.

[61]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[62]  T. Irisawa,et al.  Comparison of Components and Synthesis Genes of Cell Wall Teichoic Acid among Lactobacillus plantarum Strains , 2010, Bioscience, biotechnology, and biochemistry.

[63]  D. Mengin-Lecreulx,et al.  Synthesis of the l-Alanyl-l-alanine Cross-bridge of Enterococcus faecalis Peptidoglycan* , 2002, The Journal of Biological Chemistry.

[64]  G. Fitzgerald,et al.  Bacteriophage defence systems in lactic acid bacteria , 2004, Antonie van Leeuwenhoek.

[65]  E. Brown,et al.  Wall Teichoic Acid Polymers Are Dispensable for Cell Viability in Bacillus subtilis , 2006, Journal of bacteriology.

[66]  A. Guillot,et al.  Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. , 2007, Microbiology.

[67]  S. Foster,et al.  Analysis of the Peptidoglycan Hydrolase Complement of Lactococcus lactis: Identification of a Third N-Acetylglucosaminidase, AcmC , 2004, Applied and Environmental Microbiology.

[68]  J. Errington,et al.  Distinct and essential morphogenic functions for wall‐ and lipo‐teichoic acids in Bacillus subtilis , 2009, The EMBO journal.

[69]  G. Venemâ,et al.  Autolysis of Lactococcus lactis Is Influenced by Proteolysis , 1998, Journal of bacteriology.

[70]  J. Errington,et al.  Functional and Morphological Adaptation to Peptidoglycan Precursor Alteration in Lactococcus lactis* , 2010, The Journal of Biological Chemistry.

[71]  M. Kleerebezem,et al.  Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. , 2006, Microbiology.

[72]  Aldert L. Zomer,et al.  Cell Wall Attachment of a Widely Distributed Peptidoglycan Binding Domain Is Hindered by Cell Wall Constituents* , 2003, Journal of Biological Chemistry.

[73]  Guillaume Andre,et al.  Fluorescence and atomic force microscopy imaging of wall teichoic acids in Lactobacillus plantarum. , 2011, ACS chemical biology.

[74]  P. Loubière,et al.  Unraveling the Role of Surface Mucus-Binding Protein and Pili in Muco-Adhesion of Lactococcus lactis , 2013, PloS one.

[75]  J. Harris,et al.  Molecular organization of selected prokaryotic S-layer proteins. , 2005, Canadian journal of microbiology.

[76]  C. Weidenmaier,et al.  Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions , 2008, Nature Reviews Microbiology.

[77]  H. Neve,et al.  Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny , 2013, Applied and Environmental Microbiology.

[78]  Aldert L. Zomer,et al.  Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the lactococcal two‐component system CesSR , 2007, Molecular microbiology.

[79]  S. Lortal,et al.  The nine peptidoglycan hydrolases genes in Lactobacillus helveticus are ubiquitous and early transcribed. , 2011, International journal of food microbiology.

[80]  S. Foster,et al.  Super‐resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria , 2011, Molecular microbiology.

[81]  D. Brassart,et al.  Cell Surface-Associated Lipoteichoic Acid Acts as an Adhesion Factor for Attachment of Lactobacillus johnsoniiLa1 to Human Enterocyte-Like Caco-2 Cells , 1999, Applied and Environmental Microbiology.

[82]  M. Kleerebezem,et al.  Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling , 2012, Microbial Cell Factories.

[83]  E. Brown,et al.  Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms , 2006, Molecular microbiology.

[84]  D. Blanot,et al.  Cytoplasmic steps of peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[85]  P. Courtin,et al.  Lactococcus lactis Gene yjgB Encodes a γ-d-Glutaminyl-l-Lysyl- Endopeptidase Which Hydrolyzes Peptidoglycan , 2007, Applied and Environmental Microbiology.

[86]  H. Müller-Alouf,et al.  Enhanced Mucosal Delivery of Antigen with Cell Wall Mutants of Lactic Acid Bacteria , 2004, Infection and Immunity.

[87]  K. Schleifer,et al.  Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications , 1973, Bacteriological reviews.

[88]  P. M. Pereira,et al.  Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus , 2010, Proceedings of the National Academy of Sciences.

[89]  L. Rice,et al.  Aslfm, the D-Aspartate Ligase Responsible for the Addition of D-Aspartic Acid onto the Peptidoglycan Precursor of Enterococcus faecium* , 2006, Journal of Biological Chemistry.

[90]  Aldert L. Zomer,et al.  Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor , 2011, Proceedings of the National Academy of Sciences.

[91]  Jennifer Campbell,et al.  Wall Teichoic Acid Function, Biosynthesis, and Inhibition , 2009, Chembiochem : a European journal of chemical biology.

[92]  S. Lebeer,et al.  Analysis of the Peptidoglycan Hydrolase Complement of Lactobacillus casei and Characterization of the Major γ-D-Glutamyl-L-Lysyl-Endopeptidase , 2012, PloS one.

[93]  T. Hartung,et al.  Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Errington,et al.  A widespread family of bacterial cell wall assembly proteins , 2011, The EMBO journal.

[95]  V. Legué,et al.  The CHAP domain of Cse functions as an endopeptidase that acts at mature septa to promote Streptococcus thermophilus cell separation , 2009, Molecular microbiology.

[96]  M. Kleerebezem,et al.  Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. , 2013, Current opinion in microbiology.

[97]  M. Sugai,et al.  Cell Wall-targeting Domain of Glycylglycine Endopeptidase Distinguishes among Peptidoglycan Cross-bridges* , 2006, Journal of Biological Chemistry.

[98]  P. Rutgeerts,et al.  Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis , 2010, Clinical and experimental immunology.

[99]  W. Vollmer,et al.  Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O‐acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus , 2004, Molecular microbiology.

[100]  V. Dupres,et al.  Dual Role for the O-Acetyltransferase OatA in Peptidoglycan Modification and Control of Cell Septation in Lactobacillus plantarum , 2012, PloS one.

[101]  S. Foster,et al.  Bacterial peptidoglycan (murein) hydrolases. , 2008, FEMS microbiology reviews.

[102]  S. Foster,et al.  AcmA of Lactococcus lactis is an N‐acetylglucosaminidase with an optimal number of LysM domains for proper functioning , 2005, The FEBS journal.

[103]  Guillaume Andre,et al.  Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells , 2010, Nature communications.

[104]  M. Kleerebezem,et al.  O-Glycosylation as a Novel Control Mechanism of Peptidoglycan Hydrolase Activity* , 2013, The Journal of Biological Chemistry.

[105]  S. Kulakauskas,et al.  Identification of an essential gene responsible for d‐Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge , 2006, Molecular microbiology.

[106]  Waldemar Vollmer,et al.  Structural variation in the glycan strands of bacterial peptidoglycan. , 2008, FEMS microbiology reviews.

[107]  J. Steele,et al.  Perspectives on the contribution of lactic acid bacteria to cheese flavor development. , 2013, Current opinion in biotechnology.

[108]  C. Péchoux,et al.  Pilus Biogenesis in Lactococcus lactis: Molecular Characterization and Role in Aggregation and Biofilm Formation , 2012, PloS one.

[109]  P. Dempsey,et al.  A Lactobacillus rhamnosus GG-derived Soluble Protein, p40, Stimulates Ligand Release from Intestinal Epithelial Cells to Transactivate Epidermal Growth Factor Receptor* , 2013, The Journal of Biological Chemistry.

[110]  A. Beaussart,et al.  Towards a nanoscale view of lactic acid bacteria. , 2012, Micron.

[111]  T. Sako,et al.  Suppressive Effect on Activation of Macrophages by Lactobacillus casei Strain Shirota Genes Determining the Synthesis of Cell Wall-Associated Polysaccharides , 2008, Applied and Environmental Microbiology.

[112]  S. Kulakauskas,et al.  Peptidoglycan Structure Analysis of Lactococcus lactis Reveals the Presence of an l,d-Carboxypeptidase Involved in Peptidoglycan Maturation , 2006, Journal of bacteriology.

[113]  R. P. Ross,et al.  Genetic Response to Bacteriophage Infection in Lactococcus lactis Reveals a Four-Strand Approach Involving Induction of Membrane Stress Proteins, d-Alanylation of the Cell Wall, Maintenance of Proton Motive Force, and Energy Conservation , 2011, Journal of Virology.

[114]  P. Hols,et al.  The biosynthesis and functionality of the cell-wall of lactic acid bacteria , 1999, Antonie van Leeuwenhoek.

[115]  T. Hartung,et al.  Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on d-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones , 2007, Journal of bacteriology.

[116]  J. C. Wolters,et al.  The Response of Lactococcus lactis to Membrane Protein Production , 2011, PloS one.

[117]  M. Delepierre,et al.  Impact of peptidoglycan O‐acetylation on autolytic activities of the Enterococcus faecalis N‐acetylglucosaminidase AtlA and N‐acetylmuramidase AtlB , 2009, FEBS letters.

[118]  M. Neely,et al.  Coordinate regulation of Gram-positive cell surface components. , 2012, Current opinion in microbiology.

[119]  J. Walter,et al.  D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. , 2007, Environmental microbiology.

[120]  P. Hols,et al.  Identification of the Amidotransferase AsnB1 as Being Responsible for meso-Diaminopimelic Acid Amidation in Lactobacillus plantarum Peptidoglycan , 2011, Journal of bacteriology.

[121]  H. Schwarz,et al.  Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl , 2010, Molecular microbiology.

[122]  Julian Parkhill,et al.  Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes , 2006, PLoS genetics.

[123]  T. Klaenhammer,et al.  Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid , 2011, Proceedings of the National Academy of Sciences.

[124]  E. García,et al.  [Bacterial autolysins]. , 1983, Microbiologia espanola.

[125]  M. Desvaux,et al.  Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. , 2006, FEMS microbiology letters.

[126]  W. D. de Vos,et al.  Genetic and Biochemical Characterization of the Cell Wall Hydrolase Activity of the Major Secreted Protein of Lactobacillus rhamnosus GG , 2012, PloS one.

[127]  Sarah Dubrac,et al.  New Insights into the WalK/WalR (YycG/YycF) Essential Signal Transduction Pathway Reveal a Major Role in Controlling Cell Wall Metabolism and Biofilm Formation in Staphylococcus aureus , 2007, Journal of bacteriology.

[128]  M. Kleerebezem,et al.  Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. , 2013, Trends in immunology.

[129]  P. Cossart,et al.  OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. , 2011, The Journal of infectious diseases.

[130]  P. Gopal,et al.  The role of autolysis of lactic acid bacteria in the ripening of cheese , 1995 .

[131]  M. Kleerebezem,et al.  The structure of an alternative wall teichoic acid produced by a Lactobacillus plantarum WCFS1 mutant contains a 1,5-linked poly(ribitol phosphate) backbone with 2-α-D-glucosyl substitutions. , 2013, Carbohydrate research.

[132]  S. Lortal,et al.  Role, mechanisms and control of lactic acid bacteria lysis in cheese , 2005 .

[133]  R. Briandet,et al.  Variations in the Degree of d-Alanylation of Teichoic Acids in Lactococcus lactis Alter Resistance to Cationic Antimicrobials but Have No Effect on Bacterial Surface Hydrophobicity and Charge , 2008, Applied and Environmental Microbiology.

[134]  G. Robillard,et al.  Novel Surface Display System for Proteins on Non-Genetically Modified Gram-Positive Bacteria , 2006, Applied and Environmental Microbiology.

[135]  R. Siezen,et al.  LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria , 2010, BMC Genomics.

[136]  S. Mazmanian,et al.  Sortase‐catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus , 2001, Molecular microbiology.

[137]  S. Foster,et al.  Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. , 2003, Microbiology.

[138]  M. Kleerebezem,et al.  Recombinant lactic acid bacteria as mucosal biotherapeutic agents. , 2011, Trends in biotechnology.

[139]  C. Péchoux,et al.  Surface Proteome Analysis of a Natural Isolate of Lactococcus lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells* , 2013, Molecular & Cellular Proteomics.

[140]  S. D. De Keersmaecker,et al.  Functional Analysis of d-Alanylation of Lipoteichoic Acid in the Probiotic Strain Lactobacillus rhamnosus GG , 2007, Applied and Environmental Microbiology.

[141]  W. D. de Vos,et al.  The major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus rhamnosus GG , 2012, Microbial Cell Factories.

[142]  S. D. De Keersmaecker,et al.  Identification of a Gene Cluster for the Biosynthesis of a Long, Galactose-Rich Exopolysaccharide in Lactobacillus rhamnosus GG and Functional Analysis of the Priming Glycosyltransferase , 2009, Applied and Environmental Microbiology.

[143]  S. Walker,et al.  Wall teichoic acids of gram-positive bacteria. , 2013, Annual review of microbiology.

[144]  M. Washington,et al.  Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. , 2011, The Journal of clinical investigation.

[145]  C. Péchoux,et al.  Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle* , 2010, The Journal of Biological Chemistry.

[146]  J. Errington,et al.  Selectivity for d-Lactate Incorporation into the Peptidoglycan Precursors of Lactobacillus plantarum: Role of Aad, a VanX-Like d-Alanyl-d-Alanine Dipeptidase , 2007, Journal of bacteriology.

[147]  D. Missiakas,et al.  Protein secretion and surface display in Gram-positive bacteria , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[148]  F. Vogensen,et al.  Identification of Lactococcus lactis Genes Required for Bacteriophage Adsorption , 2004, Applied and Environmental Microbiology.

[149]  O. Kuipers,et al.  Autolysis of Lactococcus lactis Is Increased upon d-Alanine Depletion of Peptidoglycan and Lipoteichoic Acids , 2005, Journal of bacteriology.

[150]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[151]  C. Grangette,et al.  Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide , 2011, Gut.

[152]  Michael Erkelenz,et al.  Identification of the Asparagine Synthase Responsible for d-Asp Amidation in the Lactococcus lactis Peptidoglycan Interpeptide Crossbridge , 2009, Journal of bacteriology.

[153]  B. Dijkstra,et al.  Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view , 2011, Applied Microbiology and Biotechnology.

[154]  O. Kuipers,et al.  Reduced Lysis upon Growth of Lactococcus lactis on Galactose Is a Consequence of Decreased Binding of the Autolysin AcmA , 2008, Applied and Environmental Microbiology.

[155]  Francis C. Neuhaus,et al.  A Continuum of Anionic Charge: Structures and Functions of d-Alanyl-Teichoic Acids in Gram-Positive Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[156]  T. Bugg,et al.  The biosynthesis of peptidoglycan lipid-linked intermediates. , 2008, FEMS microbiology reviews.

[157]  P. Moynihan,et al.  Assay for peptidoglycan O-acetyltransferase: a potential new antibacterial target. , 2013, Analytical biochemistry.

[158]  W. D. de Vos,et al.  Mucosal Adhesion Properties of the Probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED Pilin Subunits , 2010, Applied and Environmental Microbiology.

[159]  W. D. de Vos,et al.  S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions , 2008, Proceedings of the National Academy of Sciences.

[160]  P. Serror,et al.  C-Terminal WxL Domain Mediates Cell Wall Binding in Enterococcus faecalis and Other Gram-Positive Bacteria , 2006, Journal of bacteriology.

[161]  P. Auvinen,et al.  Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein , 2009, Proceedings of the National Academy of Sciences.

[162]  S. Kulakauskas,et al.  Effects of a muramidase on a mixed bacterial community. , 2000, FEMS microbiology letters.

[163]  A. Palva,et al.  Lactobacillus surface layer proteins: structure, function and applications , 2013, Applied Microbiology and Biotechnology.

[164]  T. Mascher,et al.  Cell envelope stress response in Gram-positive bacteria. , 2008, FEMS microbiology reviews.

[165]  J. Mainardi,et al.  The Peptidoglycan of Stationary-Phase Mycobacterium tuberculosis Predominantly Contains Cross-Links Generated by l,d-Transpeptidation , 2008, Journal of bacteriology.

[166]  Christian Cambillau,et al.  Structures and host-adhesion mechanisms of lactococcal siphophages , 2014, Front. Microbiol..

[167]  J. Vanderleyden,et al.  Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens , 2010, Nature Reviews Microbiology.

[168]  O. Kuipers,et al.  Transcriptome Analysis Reveals Mechanisms by Which Lactococcus lactis Acquires Nisin Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[169]  D. Missiakas,et al.  Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria , 2014, Journal of bacteriology.

[170]  L De Vuyst,et al.  Heteropolysaccharides from lactic acid bacteria. , 1999, FEMS microbiology reviews.

[171]  J. van Heijenoort Lipid Intermediates in the Biosynthesis of Bacterial Peptidoglycan , 2007, Microbiology and Molecular Biology Reviews.

[172]  M. Kleerebezem,et al.  Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1 , 2012, Microbial Cell Factories.

[173]  Franklin L. Nobrega,et al.  Molecular Aspects and Comparative Genomics of Bacteriophage Endolysins , 2013, Journal of Virology.

[174]  O. Schneewind,et al.  Architects at the bacterial surface — sortases and the assembly of pili with isopeptide bonds , 2011, Nature Reviews Microbiology.

[175]  G. Venema,et al.  Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation , 1995, Journal of bacteriology.

[176]  A. Beaussart,et al.  Deciphering the nanometer-scale organization and assembly of Lactobacillus rhamnosus GG pili using atomic force microscopy. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[177]  A. Beaussart,et al.  Binding mechanism of the peptidoglycan hydrolase Acm2: low affinity, broad specificity. , 2013, Biophysical journal.

[178]  T. Sako,et al.  Lectin Microarray Reveals Binding Profiles of Lactobacillus casei Strains in a Comprehensive Analysis of Bacterial Cell Wall Polysaccharides , 2011, Applied and Environmental Microbiology.

[179]  D. Missiakas,et al.  Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. , 2014, Biochimica et biophysica acta.

[180]  I. Maddox,et al.  Exopolysaccharides from lactic acid bacteria: perspectives and challenges. , 2003, Trends in biotechnology.

[181]  P. Moynihan,et al.  O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. , 2011, The international journal of biochemistry & cell biology.

[182]  A. Bolotin,et al.  HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing , 2000, Molecular microbiology.

[183]  M. Bonten,et al.  LPxTG surface proteins of enterococci. , 2009, Trends in microbiology.

[184]  M. Kleerebezem,et al.  Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching , 2012, Microbial Cell Factories.

[185]  S. Lortal,et al.  Structural studies of the cell wall polysaccharides from three strains of Lactobacillus helveticus with different autolytic properties: DPC4571, BROI, and LH1. , 2013, Carbohydrate research.

[186]  D. Philpott,et al.  Peptidoglycan Molecular Requirements Allowing Detection by Nod1 and Nod2* , 2003, Journal of Biological Chemistry.