Alfvén continuum and high-frequency eigenmodes in optimized stellarators

An equation of shear Alfven eigenmodes (AE) in optimized stellarators of Wendelstein line (Helias configurations) is derived. The metric tensor coefficients, which are contained in this equation, are calculated analytically. Two numerical codes are developed: the first one, COBRA (COntinuum BRanches of Alfven waves), is intended for the investigation of the structure of Alfven continuum; the second, BOA (Branches Of Alfven modes), solves the eigenvalue problem. The family of possible gaps in Alfven continuum of a Helias configuration is obtained. It is predicted that there exist gaps which arise due to or are strongly affected by the variation of the shape of the plasma cross section along the large azimuth of the torus. In such gaps, discrete eigenmodes, namely, helicity-induced eigenmodes (HAE21) and mirror-induced eigenmodes (MAE) are found. It is shown that plasma inhomogeneity may suppress the AEs with a wide region of localization.

[1]  L. L. Lao,et al.  A numerical study of the high‐n shear Alfvén spectrum gap and the high‐n gap mode , 1992 .

[2]  G. Huysmans,et al.  More on core‐localized toroidal Alfvén eigenmodes , 1995 .

[3]  E. Hameiri Singular solutions and the continuous spectrum , 1981 .

[4]  Riccardo Betti,et al.  Stability of Alfven gap modes in burning plasmas , 1992 .

[5]  R. White,et al.  Alpha‐particle losses from toroidicity‐induced Alfvén eigenmodes. Part II: Monte Carlo simulations and anomalous alpha‐loss processes , 1992 .

[6]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[7]  A. Hasegawa,et al.  Kinetic Process of Plasma Heating Due to Alfvén Wave Excitation , 1975 .

[8]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[9]  S. Mahajan,et al.  Kinetic theory of toroidicity-induced alfvén eigenmodes , 1992 .

[10]  Spong,et al.  Neutral beam driven global Alfvén eigenmodes in the Wendelstein W7-AS stellarator. , 1994, Physical review letters.

[11]  John L. Johnson,et al.  Long‐wavelength kink instabilities in low‐pressure, uniform axial current, cylindrical plasmas with elliptic cross sections , 1974 .

[12]  G. Fu,et al.  Thermonuclear instability of global-type shear Alfven modes , 1990 .

[13]  D. Sigmar,et al.  Alpha‐particle losses from toroidicity‐induced Alfvén eigenmodes. Part I: Phase‐space topology of energetic particle orbits in tokamak plasma , 1992 .

[14]  C. Nührenberg,et al.  Compressional ideal magnetohydrodynamics: Unstable global modes, stable spectra, and Alfven eigenmodes in Wendelstein 7-X-type equilibria , 1999 .

[15]  J. Weiland,et al.  Excitation of Global Alfvén Modes by Trapped Alpha Particles , 1987 .

[16]  J. Tataronis,et al.  The shear Alfvén continuous spectrum of axisymmetric toroidal equilibria in the large aspect ratio limit , 1982, Journal of Plasma Physics.

[17]  M. N. Rosenbluth,et al.  Excitation of Alfven waves by high-energy ions in a tokamak , 1975 .

[18]  A. Boozer,et al.  Magnetic field strength of toroidal plasma equilibria , 1991 .

[19]  Masao Okamoto,et al.  High‐n helicity‐induced shear Alfvén eigenmodes , 1992 .

[20]  Chio Cheng,et al.  Fast particle destabilization of toroidal Alfven eigenmodes , 1995 .

[21]  K. Wong,et al.  A review of Alfvén eigenmode observations in toroidal plasmas , 1999 .

[22]  Allen H. Boozer,et al.  Plasma equilibrium with rational magnetic surfaces , 1981 .

[23]  Liu Chen,et al.  Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks , 1994 .

[24]  M. S. Chance,et al.  Low-n shear Alfven spectra in axisymmetric toroidal plasmas , 1986 .

[25]  M. S. Chance,et al.  Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .

[26]  G. Martin,et al.  Energetic particles in magnetic confinement systems , 2000 .

[27]  L. L. Lao,et al.  Global Alfvén modes: Theory and experiment* , 1993 .

[28]  G. Fu Existence of core localized toroidicity‐induced Alfvén eigenmode , 1995 .

[29]  Yan Ming Li,et al.  Destabilization of global Alfvén eigenmodes and kinetic Alfvén waves by alpha particles in a tokamak plasma , 1987 .

[30]  G. Sadler,et al.  Alpha particles in fusion research , 1993 .

[31]  Carolin Schwab,et al.  Ideal magnetohydrodynamics: Global mode analysis of three‐dimensional plasma configurations , 1993 .

[32]  C. Nührenberg Computational ideal MHD: Alfvén, sound and fast global modes in W7-AS , 1999 .