Alfvén continuum and high-frequency eigenmodes in optimized stellarators
暂无分享,去创建一个
H. Wobig | V. V. Lutsenko | Yu. V. Yakovenko | Ya. I. Kolesnichenko | H. Wobig | V. Lutsenko | Y. Kolesnichenko | Y. Yakovenko | O. P. Fesenyuk
[1] L. L. Lao,et al. A numerical study of the high‐n shear Alfvén spectrum gap and the high‐n gap mode , 1992 .
[2] G. Huysmans,et al. More on core‐localized toroidal Alfvén eigenmodes , 1995 .
[3] E. Hameiri. Singular solutions and the continuous spectrum , 1981 .
[4] Riccardo Betti,et al. Stability of Alfven gap modes in burning plasmas , 1992 .
[5] R. White,et al. Alpha‐particle losses from toroidicity‐induced Alfvén eigenmodes. Part II: Monte Carlo simulations and anomalous alpha‐loss processes , 1992 .
[6] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[7] A. Hasegawa,et al. Kinetic Process of Plasma Heating Due to Alfvén Wave Excitation , 1975 .
[8] G. Stewart,et al. An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .
[9] S. Mahajan,et al. Kinetic theory of toroidicity-induced alfvén eigenmodes , 1992 .
[10] Spong,et al. Neutral beam driven global Alfvén eigenmodes in the Wendelstein W7-AS stellarator. , 1994, Physical review letters.
[11] John L. Johnson,et al. Long‐wavelength kink instabilities in low‐pressure, uniform axial current, cylindrical plasmas with elliptic cross sections , 1974 .
[12] G. Fu,et al. Thermonuclear instability of global-type shear Alfven modes , 1990 .
[13] D. Sigmar,et al. Alpha‐particle losses from toroidicity‐induced Alfvén eigenmodes. Part I: Phase‐space topology of energetic particle orbits in tokamak plasma , 1992 .
[14] C. Nührenberg,et al. Compressional ideal magnetohydrodynamics: Unstable global modes, stable spectra, and Alfven eigenmodes in Wendelstein 7-X-type equilibria , 1999 .
[15] J. Weiland,et al. Excitation of Global Alfvén Modes by Trapped Alpha Particles , 1987 .
[16] J. Tataronis,et al. The shear Alfvén continuous spectrum of axisymmetric toroidal equilibria in the large aspect ratio limit , 1982, Journal of Plasma Physics.
[17] M. N. Rosenbluth,et al. Excitation of Alfven waves by high-energy ions in a tokamak , 1975 .
[18] A. Boozer,et al. Magnetic field strength of toroidal plasma equilibria , 1991 .
[19] Masao Okamoto,et al. High‐n helicity‐induced shear Alfvén eigenmodes , 1992 .
[20] Chio Cheng,et al. Fast particle destabilization of toroidal Alfven eigenmodes , 1995 .
[21] K. Wong,et al. A review of Alfvén eigenmode observations in toroidal plasmas , 1999 .
[22] Allen H. Boozer,et al. Plasma equilibrium with rational magnetic surfaces , 1981 .
[23] Liu Chen,et al. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks , 1994 .
[24] M. S. Chance,et al. Low-n shear Alfven spectra in axisymmetric toroidal plasmas , 1986 .
[25] M. S. Chance,et al. Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .
[26] G. Martin,et al. Energetic particles in magnetic confinement systems , 2000 .
[27] L. L. Lao,et al. Global Alfvén modes: Theory and experiment* , 1993 .
[28] G. Fu. Existence of core localized toroidicity‐induced Alfvén eigenmode , 1995 .
[29] Yan Ming Li,et al. Destabilization of global Alfvén eigenmodes and kinetic Alfvén waves by alpha particles in a tokamak plasma , 1987 .
[30] G. Sadler,et al. Alpha particles in fusion research , 1993 .
[31] Carolin Schwab,et al. Ideal magnetohydrodynamics: Global mode analysis of three‐dimensional plasma configurations , 1993 .
[32] C. Nührenberg. Computational ideal MHD: Alfvén, sound and fast global modes in W7-AS , 1999 .