WKB analysis of the Logarithmic Nonlinear Schrodinger Equation in an analytic framework.

We are interested in a WKB analysis of the Logarithmic Non-Linear Schrödinger Equation with "Riemann-like" variables in an analytic framework in semiclassical regime. We show that the Cauchy problem is locally well posed uniformly in the semiclassical constant and that the semiclassical limit can be performed. In particular, our framework is not only compatible with the Gross-Pitaevskii equation with logarithmic nonlinearity, but also allows initial data (and solutions) which can converge to 0 at infinity.

[1]  G. Ferriere The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition , 2019, Discrete & Continuous Dynamical Systems - A.

[2]  G. Ferriere Convergence rate in Wasserstein distance and semiclassical limit for the defocusing logarithmic Schrödinger equation , 2019, Analysis & PDE.

[3]  Jianwei Dong Blowup for the compressible isothermal Euler equations with non-vacuum initial data , 2018, Applicable Analysis.

[4]  R. Carles,et al.  WKB analysis of generalized derivative nonlinear Schrodinger equations without hyperbolicity , 2016, 1612.04149.

[5]  R. Carles,et al.  Universal dynamics for the defocusing logarithmic Schrödinger equation , 2016, Duke Mathematical Journal.

[6]  Rémi Carles,et al.  Monokinetic solutions to a singular Vlasov equation from a semiclassical perspective , 2015, Asymptot. Anal..

[7]  Toan T. Nguyen,et al.  The onset of instability in first-order systems , 2015, 1504.04477.

[8]  Eugenio Montefusco,et al.  On the logarithmic Schrodinger equation , 2013, 1304.6878.

[9]  J. Nieto,et al.  Global H1 solvability of the 3D logarithmic Schrödinger equation , 2010 .

[10]  R. Fetecau,et al.  On a regularization of the compressible Euler equations for an isothermal gas , 2009 .

[11]  F. Rousset,et al.  Geometric Optics and Boundary Layers for Nonlinear-Schrödinger Equations , 2008, 0804.1275.

[12]  Rémi Carles,et al.  Semi-Classical Analysis For Nonlinear Schrodinger Equations , 2008 .

[13]  L. Thomann Instabilité des équations de Schrödinger , 2007 .

[14]  Jean-Claude Saut,et al.  Travelling Waves for the Gross-Pitaevskii Equation II , 2007, 0711.2408.

[15]  R. Carles,et al.  WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity , 2007, 0710.0816.

[16]  Laurent Thomann Instabilities for supercritical Schr\"odinger equations in analytic manifolds , 2007, 0707.1785.

[17]  Thomas Alazard,et al.  Supercritical Geometric Optics for Nonlinear Schrödinger Equations , 2007, 0704.2488.

[18]  Guy Metivier,et al.  Remarks on the Well-Posedness of the Nonlinear Cauchy Problem , 2006, math/0611441.

[19]  Patrick Gérard,et al.  The Cauchy problem for the Gross-Pitaevskii equation , 2006 .

[20]  Axel Klar,et al.  Coupling conditions for gas networks governed by the isothermal Euler equations , 2006, Networks Heterog. Media.

[21]  R'emi Carles,et al.  WKB Analysis for Nonlinear Schrödinger Equations with Potential , 2006, math/0601611.

[22]  C. Gallo Schrödinger group on Zhidkov spaces , 2004, Advances in Differential Equations.

[23]  M Segev,et al.  Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  C. Godano,et al.  Logarithmic Schrödinger-like equation as a model for magma transport , 2003 .

[25]  B. Desjardins,et al.  On the Semiclassical Limit of the General Modified NLS Equation , 2001 .

[26]  Ole Bang,et al.  Unified model for partially coherent solitons in logarithmically nonlinear media , 2000 .

[27]  B. Desjardins,et al.  SEMICLASSICAL LIMIT OF THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION , 2000 .

[28]  Chi-Kun Lin,et al.  A REVIEW OF DISPERSIVE LIMITS OF (NON)LINEAR SCHR¨ODINGER-TYPE EQUATIONS , 2000 .

[29]  J. Ginibre,et al.  Long Range Scattering and Modified Wave Operators for some Hartree Type Equations II , 1998, math/9903073.

[30]  S. Ukai,et al.  Sur la solution à support compact de l’equation d’Euler compressible , 1986 .

[31]  Hefter,et al.  Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. , 1985, Physical review. A, General physics.

[32]  T. Cazenave Stable solutions of the logarithmic Schrödinger equation , 1983 .

[33]  I. Bialynicki-Birula,et al.  Nonlinear Wave Mechanics , 1976 .

[34]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[35]  F. Lin,et al.  Semiclassical Limit of the Gross-Pitaevskii Equation in an Exterior Domain , 2006 .

[36]  Gui-Qiang G. Chen,et al.  GLOBAL ENTROPY SOLUTIONS IN L∞ TO THE EULER EQUATIONS AND EULER-POISSON EQUATIONS FOR ISOTHERMAL FLUIDS WITH SPHERICAL SYMMETRY , 2004 .

[37]  N. Tsuge The compressible Euler equations for an isothermal gas with spherical symmetry , 2003 .

[38]  B. Wang The Cauchy problem for the nonlinear Schrödinger equations involving derivative terms in one spatial dimension , 2003 .

[39]  E. Grenier,et al.  Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .

[40]  P. Gérard Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire , 1993 .

[41]  J. Chemin Dynamique des gaz à masse totale finie , 1990 .

[42]  B. Remaud,et al.  General properties of gausson-conserving descriptions of quantal damped motion , 1981 .

[43]  A. Haraux,et al.  Équations d'évolution avec non linéarité logarithmique , 1980 .