WKB analysis of the Logarithmic Nonlinear Schrodinger Equation in an analytic framework.
暂无分享,去创建一个
[1] G. Ferriere. The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition , 2019, Discrete & Continuous Dynamical Systems - A.
[2] G. Ferriere. Convergence rate in Wasserstein distance and semiclassical limit for the defocusing logarithmic Schrödinger equation , 2019, Analysis & PDE.
[3] Jianwei Dong. Blowup for the compressible isothermal Euler equations with non-vacuum initial data , 2018, Applicable Analysis.
[4] R. Carles,et al. WKB analysis of generalized derivative nonlinear Schrodinger equations without hyperbolicity , 2016, 1612.04149.
[5] R. Carles,et al. Universal dynamics for the defocusing logarithmic Schrödinger equation , 2016, Duke Mathematical Journal.
[6] Rémi Carles,et al. Monokinetic solutions to a singular Vlasov equation from a semiclassical perspective , 2015, Asymptot. Anal..
[7] Toan T. Nguyen,et al. The onset of instability in first-order systems , 2015, 1504.04477.
[8] Eugenio Montefusco,et al. On the logarithmic Schrodinger equation , 2013, 1304.6878.
[9] J. Nieto,et al. Global H1 solvability of the 3D logarithmic Schrödinger equation , 2010 .
[10] R. Fetecau,et al. On a regularization of the compressible Euler equations for an isothermal gas , 2009 .
[11] F. Rousset,et al. Geometric Optics and Boundary Layers for Nonlinear-Schrödinger Equations , 2008, 0804.1275.
[12] Rémi Carles,et al. Semi-Classical Analysis For Nonlinear Schrodinger Equations , 2008 .
[13] L. Thomann. Instabilité des équations de Schrödinger , 2007 .
[14] Jean-Claude Saut,et al. Travelling Waves for the Gross-Pitaevskii Equation II , 2007, 0711.2408.
[15] R. Carles,et al. WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity , 2007, 0710.0816.
[16] Laurent Thomann. Instabilities for supercritical Schr\"odinger equations in analytic manifolds , 2007, 0707.1785.
[17] Thomas Alazard,et al. Supercritical Geometric Optics for Nonlinear Schrödinger Equations , 2007, 0704.2488.
[18] Guy Metivier,et al. Remarks on the Well-Posedness of the Nonlinear Cauchy Problem , 2006, math/0611441.
[19] Patrick Gérard,et al. The Cauchy problem for the Gross-Pitaevskii equation , 2006 .
[20] Axel Klar,et al. Coupling conditions for gas networks governed by the isothermal Euler equations , 2006, Networks Heterog. Media.
[21] R'emi Carles,et al. WKB Analysis for Nonlinear Schrödinger Equations with Potential , 2006, math/0601611.
[22] C. Gallo. Schrödinger group on Zhidkov spaces , 2004, Advances in Differential Equations.
[23] M Segev,et al. Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] C. Godano,et al. Logarithmic Schrödinger-like equation as a model for magma transport , 2003 .
[25] B. Desjardins,et al. On the Semiclassical Limit of the General Modified NLS Equation , 2001 .
[26] Ole Bang,et al. Unified model for partially coherent solitons in logarithmically nonlinear media , 2000 .
[27] B. Desjardins,et al. SEMICLASSICAL LIMIT OF THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION , 2000 .
[28] Chi-Kun Lin,et al. A REVIEW OF DISPERSIVE LIMITS OF (NON)LINEAR SCHR¨ODINGER-TYPE EQUATIONS , 2000 .
[29] J. Ginibre,et al. Long Range Scattering and Modified Wave Operators for some Hartree Type Equations II , 1998, math/9903073.
[30] S. Ukai,et al. Sur la solution à support compact de l’equation d’Euler compressible , 1986 .
[31] Hefter,et al. Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. , 1985, Physical review. A, General physics.
[32] T. Cazenave. Stable solutions of the logarithmic Schrödinger equation , 1983 .
[33] I. Bialynicki-Birula,et al. Nonlinear Wave Mechanics , 1976 .
[34] With Invariant Submanifolds,et al. Systems of Conservation Laws , 2009 .
[35] F. Lin,et al. Semiclassical Limit of the Gross-Pitaevskii Equation in an Exterior Domain , 2006 .
[36] Gui-Qiang G. Chen,et al. GLOBAL ENTROPY SOLUTIONS IN L∞ TO THE EULER EQUATIONS AND EULER-POISSON EQUATIONS FOR ISOTHERMAL FLUIDS WITH SPHERICAL SYMMETRY , 2004 .
[37] N. Tsuge. The compressible Euler equations for an isothermal gas with spherical symmetry , 2003 .
[38] B. Wang. The Cauchy problem for the nonlinear Schrödinger equations involving derivative terms in one spatial dimension , 2003 .
[39] E. Grenier,et al. Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .
[40] P. Gérard. Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire , 1993 .
[41] J. Chemin. Dynamique des gaz à masse totale finie , 1990 .
[42] B. Remaud,et al. General properties of gausson-conserving descriptions of quantal damped motion , 1981 .
[43] A. Haraux,et al. Équations d'évolution avec non linéarité logarithmique , 1980 .