Lagrangian Strain Tensor Computation with Higher Order Variational Models
暂无分享,去创建一个
Joachim Weickert | Tobias Scheffer | Stefan Diebels | Alexander Hewer | Henning Seibert | J. Weickert | S. Diebels | T. Scheffer | H. Seibert | Alexander Hewer
[1] S. Brendle,et al. Calculus of Variations , 1927, Nature.
[2] S. Diebels,et al. Macroindentation of a soft polymer: Identification of hyperelasticity and validation by uni/biaxial tensile tests , 2013 .
[3] Claudia Frohn-Schauf,et al. Nonlinear multigrid methods for total variation image denoising , 2004 .
[4] Daniel Cremers,et al. An Unbiased Second-Order Prior for High-Accuracy Motion Estimation , 2008, DAGM-Symposium.
[5] M. Bertero,et al. Ill-posed problems in early vision , 1988, Proc. IEEE.
[6] Thomas Brox,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .
[7] Patrick Pérez,et al. Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[8] François Hild,et al. Application of the virtual fields method to mechanical characterization of elastomeric materials , 2009 .
[9] E. Süli,et al. Numerical Solution of Partial Differential Equations , 2014 .
[10] R. Ogden. Non-Linear Elastic Deformations , 1984 .
[11] Joachim Weickert,et al. Towards ultimate motion estimation: combining highest accuracy with real-time performance , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[12] Karl Krissian,et al. Second Order Variational Optic Flow Estimation , 2007, EUROCAST.
[13] Berthold K. P. Horn,et al. Determining Optical Flow , 1981, Other Conferences.
[14] Hubert W. Schreier,et al. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .
[15] D. J. Montgomery,et al. The physics of rubber elasticity , 1949 .
[16] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..