A Novel Approach Based on Intuitionistic Fuzzy Combined Ordered Weighted Averaging Operator for Group Decision Making

This paper presents a novel approach based on the intuitionistic fuzzy combined ordered weighted averaging (IFCOWA) operator to solve multiple attribute group decision making (MAGDM) problems under...

[1]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[2]  Sidong Xian,et al.  Fuzzy Linguistic Induced Generalized OWA Operator and Its Application in Fuzzy Linguistic Decision Making , 2016, Int. J. Intell. Syst..

[3]  Ying Luo,et al.  Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making , 2010, Math. Comput. Model..

[4]  Charalambos L. Iacovou,et al.  Determining attribute weights using mathematical programming , 2003 .

[5]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[6]  Ioannis K. Vlachos,et al.  Intuitionistic fuzzy information - Applications to pattern recognition , 2007, Pattern Recognit. Lett..

[7]  Witold Pedrycz,et al.  A new model for intuitionistic fuzzy multi-attributes decision making , 2016, Eur. J. Oper. Res..

[8]  Dan Horsky,et al.  Estimation of Attribute Weights from Preference Comparisons , 1984 .

[9]  Chung-Hsing Yeh,et al.  Inter-company comparison using modified TOPSIS with objective weights , 2000, Comput. Oper. Res..

[10]  Allan D. Shocker,et al.  Linear programming techniques for multidimensional analysis of preferences , 1973 .

[11]  Sidong Xian,et al.  Fuzzy Entropic Ordered Weighted Averaging Operator and Its Application in Group Decision Making , 2016, Int. J. Intell. Syst..

[12]  Z. S. Xu,et al.  The ordered weighted geometric averaging operators , 2002, Int. J. Intell. Syst..

[13]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[14]  G. Mavrotas,et al.  Determining objective weights in multiple criteria problems: The critic method , 1995, Comput. Oper. Res..

[15]  Dug Hun Hong,et al.  Multicriteria fuzzy decision-making problems based on vague set theory , 2000, Fuzzy Sets Syst..

[16]  Jun Ye,et al.  Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and its optimal decision-making method based on the weights of alternatives , 2011, Expert Syst. Appl..

[17]  Jian Ma,et al.  A subjective and objective integrated approach to determine attribute weights , 1999, Eur. J. Oper. Res..

[18]  John R. Doyle,et al.  A comparison of three weight elicitation methods: good, better, and best , 2001 .

[19]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[20]  Sidong Xian,et al.  Interval-valued intuitionistic fuzzy combined weighted averaging operator for group decision making , 2017, J. Oper. Res. Soc..

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[23]  Yue Xiao,et al.  Intuitionistic Fuzzy Interval‐Valued Linguistic Entropic Combined Weighted Averaging Operator for Linguistic Group Decision Making , 2018, Int. J. Intell. Syst..

[24]  P. Yu,et al.  Estimating criterion weights using eigenvectors: A comparative study , 1987 .

[25]  Xiu-Gang Shang,et al.  A note on fuzzy information measures , 1997, Pattern Recognit. Lett..

[26]  Francisco Herrera,et al.  Linguistic decision analysis: steps for solving decision problems under linguistic information , 2000, Fuzzy Sets Syst..

[27]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[28]  Weixuan Xu,et al.  Estimating The Attribute Weights Through Evidential Reasoning And Mathematical Programming , 2004, Int. J. Inf. Technol. Decis. Mak..

[29]  Yanbing Liu,et al.  A Novel Approach for Linguistic Group Decision Making Based on Generalized Interval‐Valued Intuitionistic Fuzzy Linguistic Induced Hybrid Operator and TOPSIS , 2018, Int. J. Intell. Syst..

[30]  Ying-Ming Wang,et al.  A general multiple attribute decision-making approach for integrating subjective preferences and objective information , 2006, Fuzzy Sets Syst..

[31]  Zeshui Xu,et al.  A new method for ranking intuitionistic fuzzy values and its application in multi-attribute decision making , 2012, Fuzzy Optimization and Decision Making.

[32]  Shu-Ping Wan,et al.  A new method for Atanassov's interval-valued intuitionistic fuzzy MAGDM with incomplete attribute weight information , 2015, Inf. Sci..

[33]  Shyi-Ming Chen,et al.  Handling multicriteria fuzzy decision-making problems based on vague set theory , 1994 .

[34]  Sidong Xian,et al.  Fuzzy Linguistic Induced Euclidean OWA Distance Operator and its Application in Group Linguistic Decision Making , 2014, Int. J. Intell. Syst..

[35]  Humberto Bustince,et al.  Generation of linear orders for intervals by means of aggregation functions , 2013, Fuzzy Sets Syst..

[36]  Zeshui Xu Additive Intuitionistic Fuzzy Aggregation Operators Based on Fuzzy Measure , 2016, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[37]  Xiaozhan Xu,et al.  A note on the subjective and objective integrated approach to determine attribute weights , 2004, Eur. J. Oper. Res..

[38]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[39]  Sidong Xian,et al.  A New Intuitionistic Fuzzy Linguistic Hybrid Aggregation Operator and Its Application for Linguistic Group Decision Making , 2017, Int. J. Intell. Syst..

[40]  Zeshui Xu,et al.  Priorities of Intuitionistic Fuzzy Preference Relation Based on Multiplicative Consistency , 2014, IEEE Transactions on Fuzzy Systems.

[41]  Ting-Yu Chen,et al.  Objective weights with intuitionistic fuzzy entropy measures and computational experiment analysis , 2011, Appl. Soft Comput..

[42]  Sidong Xian,et al.  Intuitionistic Fuzzy Linguistic Induced Ordered Weighted Averaging Operator for Group Decision Making , 2015, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[43]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[44]  Guangtao Fu,et al.  A fuzzy optimization method for multicriteria decision making: An application to reservoir flood control operation , 2008, Expert Syst. Appl..

[45]  Chao Fu,et al.  A method of determining attribute weights in evidential reasoning approach based on incompatibility among attributes , 2015, Comput. Ind. Eng..

[46]  Guiwu Wei,et al.  Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making , 2010, Appl. Soft Comput..

[47]  Janusz Kacprzyk,et al.  A consensus‐reaching process under intuitionistic fuzzy preference relations , 2003, Int. J. Intell. Syst..

[48]  Ying-Ming Wang,et al.  On fuzzy multiattribute decision-making models and methods with incomplete preference information , 2005, Fuzzy Sets Syst..

[49]  Byeong Seok Ahn,et al.  Comparing methods for multiattribute decision making with ordinal weights , 2008, Comput. Oper. Res..

[50]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[51]  Humberto Bustince,et al.  A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications , 2013, IEEE Transactions on Fuzzy Systems.

[52]  Sheng-Yi Jiang,et al.  A note on information entropy measures for vague sets and its applications , 2008, Inf. Sci..

[53]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .