In situ investigation of protein structure in Pacific whiting surimi and gels using Raman spectroscopy

[1]  J. Yongsawatdigul,et al.  Rheological Behavior and Potential Cross‐Linking of Pacific Whiting (Merluccius productus) Surimi Gel , 1994 .

[2]  T. Tsuchiya,et al.  a-Helical Structure of Fish Actomyosin Changes during Storage , 1996 .

[3]  S. Nakai,et al.  Raman spectroscopic study of thermally and/or dithiothreitol induced gelation of lysozyme , 1991 .

[4]  M. Bouraoui Surimi-based product development and viscous properties of surimi paste , 1996 .

[5]  R. Clark,et al.  Spectroscopy of biological systems , 1986 .

[6]  Y. Tsukamasa,et al.  ɛ‐(γ‐Glutamyl)lysine Crosslink Formation in Sardine Myofibril Sol during Setting at 25°C , 1993 .

[7]  C. M Lee,et al.  Surimi process technology , 1984 .

[8]  D. Stanley,et al.  Mechanisms of fish muscle gelation. , 1992 .

[9]  E. Li-Chan,et al.  The applications of Raman spectroscopy in food science , 1996 .

[10]  John Bolte,et al.  Linear regression, neural network and induction analysis to determine harvesting and processing effects on surimi quality , 1996 .

[11]  S. Nakai,et al.  Raman spectroscopy as a probe of protein structure in food systems , 1994 .

[12]  T. Gill,et al.  Thermal Aggregation of Cod (Gadus morhud) Muscle Proteins Using 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide as a Zero Length Cross-linker , 1989 .

[13]  S. Nakai,et al.  Raman spectroscopic study of thermally induced gelation of whey proteins , 1993 .

[14]  S. P. Verma,et al.  Changes of Raman scattering in the CU-stretching region during thermally induced unfolding of ribonuclease. , 1977, Biochemical and biophysical research communications.

[15]  J. Bailey,et al.  Structure-function relationships in the inorganic salt-induced precipitation of α-chymotrypsin , 1989 .

[16]  H. An,et al.  Roles of endogenous enzymes in surimi gelation , 1996 .

[17]  A. Paulson,et al.  The dynamics of thermal denaturation of fish myosins , 1992 .

[18]  J L Lippert,et al.  Determination of the secondary structure of proteins by laser Raman spectroscopy. , 1976, Journal of the American Chemical Society.

[19]  T. Tsuchiya,et al.  Alpha-helical structure of fish actomyosin: changes during setting , 1995 .

[20]  J. L. Smith,et al.  Protein structure-function relationships in foods , 1994 .

[21]  M. Morrissey,et al.  Protease Inhibitor Effects on Torsion Measurements and Autolysis of Pacific Whiting Surimi , 1993 .

[22]  M. Pézolet,et al.  Laser Raman study of internally perfused muscle fibers. Effect of Mg2+, ATP and Ca2+. , 1983, Biochimica et biophysica acta.

[23]  T. Tsuchiya,et al.  Thermal stability of fish myosin , 1993 .

[24]  Y. Kawano,et al.  Raman and infrared studies on the conformation of porcine pancreatic and Crotalus durissus terrificus phospholipases A2. , 1989, Biochimica et biophysica acta.

[25]  R. Rand,et al.  Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems. , 1973, Biochimica et biophysica acta.

[26]  T. Tsuchiya,et al.  Thermal Gelation Characteristics of Myosin Subfragments , 1990 .

[27]  T. Barrett,et al.  Laser Raman light-scattering observations of conformational changes in myosin induced by inorganic salts. , 1978, Biophysical journal.

[28]  H E Stanley,et al.  Laser raman spectroscopy--new probe of myosin substructure. , 1975, Science.

[29]  D. Lin-Vien The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules , 1991 .