Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies

The ‘bionic eye’—so long a dream of the future—is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.

[1]  Markus Martini,et al.  “The world is upside down” – The Innsbruck Goggle Experiments of Theodor Erismann (1883–1961) and Ivo Kohler (1915–1985) , 2017, Cortex.

[2]  J. Faubert,et al.  Cholinergic Potentiation Improves Perceptual-Cognitive Training of Healthy Young Adults in Three Dimensional Multiple Object Tracking , 2017, Front. Hum. Neurosci..

[3]  J. Neitz,et al.  Evolution of the circuitry for conscious color vision in primates , 2017, Eye.

[4]  M. Castelo‐Branco,et al.  Primary visual cortical remapping in patients with inherited peripheral retinal degeneration , 2016, NeuroImage: Clinical.

[5]  Gislin Dagnelie,et al.  Performance of real‐world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system , 2016, Clinical & experimental ophthalmology.

[6]  J. Sahel,et al.  Pixium Vision: First Clinical Results and Innovative Developments , 2017 .

[7]  M. Fahle,et al.  Adaptation, perceptual learning, and plasticity of brain functions , 2017, Graefe's Archive for Clinical and Experimental Ophthalmology.

[8]  Y. Trotter,et al.  Rehabilitation Approaches in Macular Degeneration Patients , 2016, Front. Syst. Neurosci..

[9]  Lynne Kiorpes,et al.  The Puzzle of Visual Development: Behavior and Neural Limits , 2016, The Journal of Neuroscience.

[10]  H. Kishima,et al.  One-Year Outcome of 49-Channel Suprachoroidal-Transretinal Stimulation Prosthesis in Patients With Advanced Retinitis Pigmentosa. , 2016, Investigative ophthalmology & visual science.

[11]  W. Byblow,et al.  Fluoxetine Does Not Enhance Visual Perceptual Learning and Triazolam Specifically Impairs Learning Transfer , 2016, Front. Hum. Neurosci..

[12]  M. Morrone,et al.  Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis , 2016, PLoS biology.

[13]  Gislin Dagnelie,et al.  Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. , 2016, Ophthalmology.

[14]  Olivier Marre,et al.  Red‐shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina , 2016, EMBO molecular medicine.

[15]  Chayenne Van Meel,et al.  The Transfer of Object Learning after Training with Multiple Exemplars , 2016, Front. Psychol..

[16]  Genshiro A. Sunagawa,et al.  Efficacy of valproic acid for retinitis pigmentosa patients: a pilot study , 2016, Clinical ophthalmology.

[17]  Jennifer I. Lim,et al.  Worldwide Argus II implantation: recommendations to optimize patient outcomes , 2016, BMC Ophthalmology.

[18]  Gislin Dagnelie,et al.  Hand-Camera Coordination Varies over Time in Users of the Argus® II Retinal Prosthesis System , 2016, Front. Syst. Neurosci..

[19]  Uri Polat,et al.  Gains following perceptual learning are closely linked to the initial visual acuity , 2016, Scientific Reports.

[20]  Duje Tadin,et al.  Relearning to See in Cortical Blindness , 2016, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[21]  J. Lackner,et al.  Aging and Sensory Substitution in a Virtual Navigation Task , 2016, PloS one.

[22]  Shachar Maidenbaum,et al.  Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution , 2016, PloS one.

[23]  A. T.V.S.,et al.  OF QUANTITATIVE , 2016 .

[24]  Valero Laparra,et al.  Perceptual image quality assessment using a normalized Laplacian pyramid , 2016, HVEI.

[25]  K. Nishida,et al.  False reaching movements in localization test and effect of auditory feedback in simulated ultra-low vision subjects and patients with retinitis pigmentosa , 2016, Graefe's Archive for Clinical and Experimental Ophthalmology.

[26]  Pinglei Bao,et al.  Using an achiasmic human visual system to quantify the relationship between the fMRI BOLD signal and neural response , 2015, eLife.

[27]  Paul V McGraw,et al.  The effect of normal aging and age-related macular degeneration on perceptual learning. , 2015, Journal of vision.

[28]  H. Drexler,et al.  Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma , 2015, PloS one.

[29]  Ehud Zohary,et al.  The Limits of Shape Recognition following Late Emergence from Blindness , 2015, Current Biology.

[30]  Ione Fine,et al.  Pulse trains to percepts: the challenge of creating a perceptually intelligible world with sight recovery technologies , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Ione Fine,et al.  Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience , 2015, The Journal of Neuroscience.

[32]  David C. Knill,et al.  Stereopsis and amblyopia: A mini-review , 2015, Vision Research.

[33]  Diego Ghezzi,et al.  Retinal prostheses: progress toward the next generation implants , 2015, Front. Neurosci..

[34]  Michael H Berry,et al.  Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[35]  Aaron R. Seitz,et al.  Confidence-based integrated reweighting model of task-difficulty explains location-based specificity in perceptual learning. , 2015, Journal of vision.

[36]  Shachar Maidenbaum,et al.  Navigation Using Sensory Substitution in Real and Virtual Mazes , 2015, PloS one.

[37]  B. Wilhelm,et al.  Subretinal Visual Implant Alpha IMS – Clinical trial interim report , 2015, Vision Research.

[38]  Michael S. Landy,et al.  Vision research special issue: Sight restoration: Prosthetics, optogenetics and gene therapy , 2015, Vision Research.

[39]  A. Caramazza,et al.  Functional connectivity of visual cortex in the blind follows retinotopic organization principles , 2015, Brain : a journal of neurology.

[40]  D. Palanker,et al.  Photovoltaic restoration of sight with high visual acuity , 2015, Nature Medicine.

[41]  Alex R. Wade,et al.  A Lack of Experience-Dependent Plasticity After More Than a Decade of Recovered Sight , 2015, Psychological science.

[42]  Anthony G. Robson,et al.  Congenital stationary night blindness: An analysis and update of genotype–phenotype correlations and pathogenic mechanisms , 2015, Progress in Retinal and Eye Research.

[43]  Stephan Meyer Zum Alten Borgloh,et al.  Adult Cortical Plasticity Studied with Chronically Implanted Electrode Arrays , 2015, The Journal of Neuroscience.

[44]  Jesse S. Husk,et al.  The effect of motion on crowding: zooming text. , 2015, Journal of vision.

[45]  Takao K Hensch,et al.  Critical periods in speech perception: new directions. , 2015, Annual review of psychology.

[46]  A. Logvinenko The geometric structure of color. , 2015, Journal of vision.

[47]  S. Engel,et al.  Plasticity, and Its Limits, in Adult Human Primary Visual Cortex. , 2015, Multisensory research.

[48]  S. Rizzo,et al.  Visual field changes following implantation of the Argus II retinal prosthesis , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[49]  Chris E. Williams,et al.  First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis , 2014, PloS one.

[50]  S. Klein,et al.  Vernier perceptual learning transfers to completely untrained retinal locations after double training: a "piggybacking" effect. , 2014, Journal of vision.

[51]  A. Pouget,et al.  Information-limiting correlations , 2014, Nature Neuroscience.

[52]  K. Grill-Spector,et al.  Electrical Stimulation of the Left and Right Human Fusiform Gyrus Causes Different Effects in Conscious Face Perception , 2014, The Journal of Neuroscience.

[53]  Stanislao Rizzo,et al.  The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. , 2014, American journal of ophthalmology.

[54]  George J. Andersen,et al.  Optimization of perceptual learning: Effects of task difficulty and external noise in older adults , 2014, Vision Research.

[55]  Aaron R. Seitz,et al.  Broad-based visual benefits from training with an integrated perceptual-learning video game , 2014, Vision Research.

[56]  Brian P Schmidt,et al.  Neurobiological hypothesis of color appearance and hue perception. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[57]  Michael C Crair,et al.  Role of emergent neural activity in visual map development , 2014, Current Opinion in Neurobiology.

[58]  C. Gilbert,et al.  Large-Scale Axonal Reorganization of Inhibitory Neurons following Retinal Lesions , 2014, The Journal of Neuroscience.

[59]  Luis A. Lesmes,et al.  Development of pattern vision following early and extended blindness , 2014, Proceedings of the National Academy of Sciences.

[60]  Gunnar Blohm,et al.  Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement. , 2014, Journal of vision.

[61]  Nicholas L Opie,et al.  Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis , 2014, Clinical & experimental ophthalmology.

[62]  R. Linden,et al.  Advances in gene therapy technologies to treat retinitis pigmentosa , 2013, Clinical ophthalmology.

[63]  Shachar Maidenbaum,et al.  The "EyeCane", a new electronic travel aid for the blind: Technology, behavior & swift learning. , 2014, Restorative neurology and neuroscience.

[64]  Takao K. Hensch,et al.  Valproate reopens critical-period learning of absolute pitch , 2013, Front. Syst. Neurosci..

[65]  P. Sinha,et al.  Restoring Vision through “Project Prakash”: The Opportunities for Merging Science and Service , 2013, PLoS biology.

[66]  Susana T. L. Chung Cortical Reorganization after Long-Term Adaptation to Retinal Lesions in Humans , 2013, The Journal of Neuroscience.

[67]  Georgios A. Keliris,et al.  Visual cortex organisation in a macaque monkey with macular degeneration , 2013, The European journal of neuroscience.

[68]  Yuri Ostrovsky,et al.  Vision after 53 years of blindness , 2013, i-Perception.

[69]  Astrid M L Kappers,et al.  Genotype and phenotype of 101 dutch patients with congenital stationary night blindness. , 2013, Ophthalmology.

[70]  G. Vandewalle,et al.  Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. , 2013, Brain : a journal of neurology.

[71]  Shachar Maidenbaum,et al.  Increasing Accessibility to the Blind of Virtual Environments, Using a Virtual Mobility Aid Based On the "EyeCane": Feasibility Study , 2013, PloS one.

[72]  Jianhua Cang,et al.  Developmental mechanisms of topographic map formation and alignment. , 2013, Annual review of neuroscience.

[73]  S. Molotchnikoff,et al.  Fluoxetine and serotonin facilitate attractive‐adaptation‐induced orientation plasticity in adult cat visual cortex , 2013, The European journal of neuroscience.

[74]  Deyue Yu,et al.  Sensory and cognitive influences on the training-related improvement of reading speed in peripheral vision. , 2013, Journal of Vision.

[75]  Ione Fine,et al.  Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping. , 2013, Journal of vision.

[76]  Ariel Rokem,et al.  The benefits of cholinergic enhancement during perceptual learning are long-lasting , 2013, Front. Comput. Neurosci..

[77]  Angelika Braun,et al.  Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS , 2013, Proceedings of the Royal Society B: Biological Sciences.

[78]  C. Kay,et al.  Long-term follow-up for efficacy and safety of treatment of retinitis pigmentosa with valproic acid , 2013, British Journal of Ophthalmology.

[79]  E. Krupinski,et al.  Characterizing the development of visual search expertise in pathology residents viewing whole slide images. , 2013, Human pathology.

[80]  Jessy D. Dorn,et al.  The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss , 2013, British Journal of Ophthalmology.

[81]  Jessy D. Dorn,et al.  The Detection of Motion by Blind Subjects With the Epiretinal 60-Electrode (Argus II) Retinal Prosthesis. , 2013, JAMA ophthalmology.

[82]  Tony Vladusich,et al.  Gamut relativity: a new computational approach to brightness and lightness perception. , 2013, Journal of vision.

[83]  A. Prochiantz,et al.  Homeoprotein Signaling in Development, Health, and Disease: A Shaking of Dogmas Offers Challenges and Promises from Bench to Bed , 2013, Pharmacological Reviews.

[84]  Takao K Hensch,et al.  Balancing plasticity/stability across brain development. , 2013, Progress in brain research.

[85]  Gordon E Legge,et al.  Higher-contrast requirements for recognizing low-pass-filtered letters. , 2013, Journal of vision.

[86]  Frank Tong,et al.  Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex , 2012, The Journal of Neuroscience.

[87]  A. Wong New concepts concerning the neural mechanisms of amblyopia and their clinical implications. , 2012, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[88]  Brian A. Wandell,et al.  Plasticity and Stability of the Visual System in Human Achiasma , 2012, Neuron.

[89]  A. Prochiantz,et al.  Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex , 2012, The Journal of Neuroscience.

[90]  S. Klein,et al.  Task relevancy and demand modulate double-training enabled transfer of perceptual learning , 2012, Vision Research.

[91]  R. Sisk Valproic acid treatment may be harmful in non-dominant forms of retinitis pigmentosa , 2012, British Journal of Ophthalmology.

[92]  A. Sher,et al.  Photovoltaic Retinal Prosthesis with High Pixel Density , 2012, Nature Photonics.

[93]  Jessy D. Dorn,et al.  Interim results from the international trial of Second Sight's visual prosthesis. , 2012, Ophthalmology.

[94]  I. Howard Effects of visual deprivation , 2012 .

[95]  Peter M. Kaskan,et al.  Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys , 2012, The Journal of comparative neurology.

[96]  B. Roska,et al.  Optogenetic therapy for retinitis pigmentosa , 2011, Gene Therapy.

[97]  R. Shannon Advances in auditory prostheses. , 2012, Current opinion in neurology.

[98]  Roger W. Li,et al.  Video-Game Play Induces Plasticity in the Visual System of Adults with Amblyopia , 2011, PLoS biology.

[99]  D. Sagi Perceptual learning in Vision Research , 2011, Vision Research.

[100]  H. Kishima,et al.  Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. , 2011, Investigative ophthalmology & visual science.

[101]  Frans W Cornelissen,et al.  Large-scale remapping of visual cortex is absent in adult humans with macular degeneration , 2011, Nature Neuroscience.

[102]  Susana T. L. Chung Improving reading speed for people with central vision loss through perceptual learning. , 2011, Investigative ophthalmology & visual science.

[103]  Ione Fine,et al.  The Effects of Visual Deprivation After Infancy , 2011 .

[104]  Fan-Gang Zeng,et al.  Advances in Auditory Prostheses , 2011 .

[105]  B. Rosner,et al.  Lack of scientific rationale for use of valproic acid for retinitis pigmentosa , 2010, British Journal of Ophthalmology.

[106]  A. Landau,et al.  Cholinergic Enhancement Increases the Effects of Voluntary Attention but Does Not Affect Involuntary Attention , 2010, Neuropsychopharmacology.

[107]  Daphne Bavelier,et al.  Removing Brakes on Adult Brain Plasticity: From Molecular to Behavioral Interventions , 2010, The Journal of Neuroscience.

[108]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[109]  Satoru Miyauchi,et al.  Task-dependent V1 responses in human retinitis pigmentosa. , 2010, Investigative ophthalmology & visual science.

[110]  S. Klein,et al.  Rule-Based Learning Explains Visual Perceptual Learning and Its Specificity and Transfer , 2010, The Journal of Neuroscience.

[111]  Amy M. Ni,et al.  Microstimulation Reveals Limits in Detecting Different Signals from a Local Cortical Region , 2010, Current Biology.

[112]  S. Kaushal,et al.  Therapeutic potential of valproic acid for retinitis pigmentosa , 2010, British Journal of Ophthalmology.

[113]  William A. Simpson,et al.  An ideal observer approach to simple visual reaction time , 2010 .

[114]  S. Di Giovanni,et al.  Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. , 2010, Investigative ophthalmology & visual science.

[115]  C. Gilbert,et al.  Rapid Axonal Sprouting and Pruning Accompany Functional Reorganization in Primary Visual Cortex , 2009, Neuron.

[116]  Brian A. Wandell,et al.  Plasticity and stability of visual field maps in adult primary visual cortex , 2009, Nature Reviews Neuroscience.

[117]  Ethan M. Meyers,et al.  Visual Parsing After Recovery From Blindness , 2009, Psychological science.

[118]  Mark S Humayun,et al.  Brightness as a function of current amplitude in human retinal electrical stimulation. , 2009, Investigative ophthalmology & visual science.

[119]  Lars Muckli,et al.  Bilateral visual field maps in a patient with only one hemisphere , 2009, Proceedings of the National Academy of Sciences.

[120]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[121]  Daniel Yoshor,et al.  Perceiving Electrical Stimulation of Identified Human Visual Areas , 2009, NeuroImage.

[122]  Daniel D. Dilks,et al.  Reorganization of Visual Processing in Macular Degeneration Is Not Specific to the “Preferred Retinal Locus” , 2009, The Journal of Neuroscience.

[123]  T. Landis,et al.  Perceptual Distortion in Homonymous Paracentral Scotomas , 2009, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[124]  Patrik Vuilleumier,et al.  Dynamic Changes in Brain Activity during Prism Adaptation , 2009, The Journal of Neuroscience.

[125]  James Weiland,et al.  Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. , 2009, Progress in brain research.

[126]  Ulf T. Eysel,et al.  Adult Cortical Plasticity , 2009 .

[127]  Roger W Li,et al.  Prolonged Perceptual Learning of Positional Acuity in Adult Amblyopia: Perceptual Template Retuning Dynamics , 2008, The Journal of Neuroscience.

[128]  S. Klein,et al.  Complete Transfer of Perceptual Learning across Retinal Locations Enabled by Double Training , 2008, Current Biology.

[129]  B. Wandell,et al.  V1 projection zone signals in human macular degeneration depend on task, not stimulus. , 2008, Cerebral cortex.

[130]  Daniel D. Dilks,et al.  Reorganization of visual processing in macular degeneration: Replication and clues about the role of foveal loss , 2008, Vision Research.

[131]  M. Feller,et al.  Mechanisms underlying development of visual maps and receptive fields. , 2008, Annual review of neuroscience.

[132]  Alexander G. Huth,et al.  Visual Motion Area MT+/V5 Responds to Auditory Motion in Human Sight-Recovery Subjects , 2008, The Journal of Neuroscience.

[133]  L. Maffei,et al.  The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex , 2008, Science.

[134]  G. Pourtois,et al.  Effects of perceptual learning on primary visual cortex activity in humans , 2008, Vision Research.

[135]  J. Pratt,et al.  Playing an Action Video Game Reduces Gender Differences in Spatial Cognition , 2007, Psychological science.

[136]  Daniel D. Dilks,et al.  Human Adult Cortical Reorganization and Consequent Visual Distortion , 2007, The Journal of Neuroscience.

[137]  R Clay Reid,et al.  Demonstration of artificial visual percepts generated through thalamic microstimulation , 2007, Proceedings of the National Academy of Sciences.

[138]  Fumitaka Osakada,et al.  Wnt Signaling Promotes Regeneration in the Retina of Adult Mammals , 2007, The Journal of Neuroscience.

[139]  E. J. Tehovnik,et al.  Phosphene induction by microstimulation of macaque V1 , 2007, Brain Research Reviews.

[140]  B. Jones,et al.  Retinal remodeling in inherited photoreceptor degenerations , 2003, Molecular Neurobiology.

[141]  Yang Dan,et al.  Experience-Dependent Plasticity in Adult Visual Cortex , 2006, Neuron.

[142]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[143]  Michael M Merzenich,et al.  Perceptual Learning Directs Auditory Cortical Map Reorganization through Top-Down Influences , 2006, The Journal of Neuroscience.

[144]  Mriganka Sur,et al.  Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks. , 2006, Progress in brain research.

[145]  M. Stryker,et al.  Ephrin-As Guide the Formation of Functional Maps in the Visual Cortex , 2005, Neuron.

[146]  S. Ullman,et al.  Neuroscience: Rewiring the adult brain , 2005, Nature.

[147]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[148]  B. Dosher,et al.  The dynamics of perceptual learning: an incremental reweighting model. , 2005, Psychological review.

[149]  Henning Scheich,et al.  Learning-induced plasticity in animal and human auditory cortex , 2005, Current Opinion in Neurobiology.

[150]  Margot J. Taylor,et al.  Holistic Processing of Faces: Learning Effects with Mooney Faces , 2005, Journal of Cognitive Neuroscience.

[151]  N. Logothetis,et al.  Lack of long-term cortical reorganization after macaque retinal lesions , 2005, Nature.

[152]  Gordon M. Redding,et al.  Applications of prism adaptation: a tutorial in theory and method , 2005, Neuroscience & Biobehavioral Reviews.

[153]  R. McLendon,et al.  Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. , 2005, Cancer research.

[154]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[155]  Andrew A. Marino,et al.  ELECTRICAL STIMULATION OF , 2005 .

[156]  Takao K Hensch,et al.  Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. , 2005, Progress in brain research.

[157]  T. Hensch Critical period mechanisms in developing visual cortex. , 2005, Current topics in developmental biology.

[158]  Misha Tsodyks,et al.  Perceptual learning in contrast discrimination: the effect of contrast uncertainty. , 2004, Journal of vision.

[159]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[160]  Rafael Malach,et al.  One Picture Is Worth at Least a Million Neurons , 2004, Current Biology.

[161]  Bruce G. Cumming,et al.  Orientation tuning for disparity defined edges in Macaque V2 , 2004 .

[162]  C. Gilbert,et al.  Perceptual learning and top-down influences in primary visual cortex , 2004, Nature Neuroscience.

[163]  C. Furmanski,et al.  Learning Strengthens the Response of Primary Visual Cortex to Simple Patterns , 2004, Current Biology.

[164]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[165]  Cong Yu,et al.  Perceptual learning in contrast discrimination and the (minimal) role of context. , 2004, Journal of vision.

[166]  J. Maunsell,et al.  The Effect of Perceptual Learning on Neuronal Responses in Monkey Visual Area V4 , 2004, The Journal of Neuroscience.

[167]  Anders Ringdahl,et al.  Living with cochlear implants: experiences of 17 adult patients in Sweden , 2004, International journal of audiology.

[168]  D. Cogan Visual hallucinations as release phenomena , 1973, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[169]  D. O'Leary,et al.  Retinotopic Map Refinement Requires Spontaneous Retinal Waves during a Brief Critical Period of Development , 2003, Neuron.

[170]  Matthew S. Grubb,et al.  Abnormal Functional Organization in the Dorsal Lateral Geniculate Nucleus of Mice Lacking the β2 Subunit of the Nicotinic Acetylcholine Receptor , 2003, Neuron.

[171]  Michael B Hoffmann,et al.  Organization of the Visual Cortex in Human Albinism , 2003, The Journal of Neuroscience.

[172]  Alex R. Wade,et al.  Long-term deprivation affects visual perception and cortex , 2003, Nature Neuroscience.

[173]  M. Eisen,et al.  Djourno, Eyries, and the First Implanted Electrical Neural Stimulator to Restore Hearing , 2003, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[174]  Shimon Ullman,et al.  Filling-in of retinal scotomas , 2003, Vision Research.

[175]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[176]  P. Maquet,et al.  Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[177]  S. Wu,et al.  Adler's Physiology of the Eye , 2002 .

[178]  D. Bavelier,et al.  Cross-modal plasticity: where and how? , 2002, Nature Reviews Neuroscience.

[179]  Henry Kennedy,et al.  Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. , 2002, Cerebral cortex.

[180]  Herbert Jägle,et al.  Reorganization of human cortical maps caused by inherited photoreceptor abnormalities , 2002, Nature Neuroscience.

[181]  John H. R. Maunsell,et al.  Physiological correlates of perceptual learning in monkey V1 and V2. , 2002, Journal of neurophysiology.

[182]  Robert A. Jacobs,et al.  Comparing perceptual learning across tasks: A review , 2002 .

[183]  Misha Tsodyks,et al.  Context-enabled learning in the human visual system , 2002, Nature.

[184]  H. Smallman,et al.  Visual function before and after the removal of bilateral congenital cataracts in adulthood , 2002, Vision Research.

[185]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[186]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[187]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[188]  M. Mishkin,et al.  Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. , 2001, Journal of neurophysiology.

[189]  C. Gilbert,et al.  Learning to see: experience and attention in primary visual cortex , 2001, Nature Neuroscience.

[190]  G. Westheimer Is peripheral visual acuity susceptible to perceptual learning in the adult? , 2001, Vision Research.

[191]  G. Cibis,et al.  The negative ERG is not synonymous with nightblindness. , 2001, Transactions of the American Ophthalmological Society.

[192]  J. Maunsell,et al.  Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing , 2000, Nature Neuroscience.

[193]  T. Landis,et al.  Perceptual distortion around homonymous scotomas is not restricted to defects located in the right hemifield , 2000, The British journal of ophthalmology.

[194]  M. Sur,et al.  Visual behaviour mediated by retinal projections directed to the auditory pathway , 2000, Nature.

[195]  R. Jacobs,et al.  Perceptual learning for a pattern discrimination task , 2000, Vision Research.

[196]  L. Maffei,et al.  BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex , 1999, Cell.

[197]  A. Safran,et al.  The “thin man” phenomenon: a sign of cortical plasticity following inferior homonymous paracentral scotomas , 1999, British Journal of Ophthalmology.

[198]  Z L Lu,et al.  Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[199]  J. Horton,et al.  Monocular Core Zones and Binocular Border Strips in Primate Striate Cortex Revealed by the Contrasting Effects of Enucleation, Eyelid Suture, and Retinal Laser Lesions on Cytochrome Oxidase Activity , 1998, The Journal of Neuroscience.

[200]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[201]  D. Brooks,et al.  Evidence for striatal dopamine release during a video game , 1998, Nature.

[202]  D. Sagi,et al.  Contrast masking effects change with practice , 1997, Vision Research.

[203]  S. Hochstein,et al.  Task difficulty and the specificity of perceptual learning , 1997, Nature.

[204]  C. Kennard,et al.  Can visual function be restored in patients with homonymous hemianopia? , 1997, The British journal of ophthalmology.

[205]  D. V. van Essen,et al.  Development of connections within and between areas V1 and V2 of macaque monkeys , 1996, The Journal of comparative neurology.

[206]  K. Pawelzik,et al.  Organization of the visual cortex , 1996, Nature.

[207]  J. Mollon,et al.  Three remarks on perceptual learning. , 1996, Spatial vision.

[208]  V. Arshavsky,et al.  What are the mechanisms of photoreceptor adaptation , 1995 .

[209]  C. Gilbert,et al.  Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[210]  M. Rosa,et al.  Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex. , 1995, The Journal of physiology.

[211]  D. Levi,et al.  Perceptual learning in vernier acuity: What is learned? , 1995, Vision Research.

[212]  J Bullier,et al.  Developmental remodeling of primate visual cortical pathways. , 1995, Cerebral cortex.

[213]  C. Gilbert,et al.  Axonal sprouting accompanies functional reorganization in adult cat striate cortex , 1994, Nature.

[214]  G Westheimer,et al.  A quantitative measure for short-term cortical plasticity in human vision , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[215]  M. Rizzo The Role of Striate Cortex , 1994 .

[216]  M. Wu [Advances in gene therapy]. , 1993, Zhonghua yi xue za zhi.

[217]  M. Merzenich,et al.  Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[218]  V. Hömberg,et al.  Cerebral visual motion blindness: transitory akinetopsia induced by transcranial magnetic stimulation of human area V5 , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[219]  Richard F. Haines,et al.  The effects of video compression on acceptability of images for monitoring life sciences experiments , 1992 .

[220]  G. Recanzone,et al.  Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. , 1992, Journal of neurophysiology.

[221]  G. Recanzone,et al.  Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. , 1992, Journal of neurophysiology.

[222]  W M Jenkins,et al.  Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. , 1992, Journal of neurophysiology.

[223]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[224]  J. Kaas,et al.  Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. , 1990, Science.

[225]  C. Johnson,et al.  Quantitative evaluation of manual kinetic perimetry using computer simulation. , 1990, Applied optics.

[226]  Dan J. Swift,et al.  Spatial frequency masking and Weber's Law , 1983, Vision Research.

[227]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[228]  S. Sherman,et al.  Organization of visual pathways in normal and visually deprived cats. , 1982, Physiological reviews.

[229]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[230]  T N Wiesel,et al.  Effect of dark-rearing on experimental myopia in monkeys. , 1978, Investigative ophthalmology & visual science.

[231]  R H Wurtz,et al.  Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. , 1977, Journal of neurophysiology.

[232]  H. Gerrits,et al.  The filling-in process in patients with retinal scotomata. , 1969, Vision research.

[233]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[234]  D. Hubel,et al.  Extent of recovery from the effects of visual deprivation in kittens. , 1965, Journal of neurophysiology.

[235]  D. Hubel,et al.  EFFECTS OF VISUAL DEPRIVATION ON MORPHOLOGY AND PHYSIOLOGY OF CELLS IN THE CATS LATERAL GENICULATE BODY. , 1963, Journal of neurophysiology.

[236]  A. Cowey,et al.  Striate cortex lesions and visual acuity of the rhesus monkey. , 1963, Journal of comparative and physiological psychology.

[237]  C. M. Mooney Age in the development of closure ability in children. , 1957, Canadian journal of psychology.

[238]  J. Bauer Genotype and Phenotype. , 1927 .

[239]  E. Thorndike,et al.  The influence of improvement in one mental function upon the efficiency of other functions. (I). , 1901 .

[240]  G. Stratton Vision without inversion of the retinal image. , 1897 .

[241]  George M. Stratton,et al.  Upright Vision and the Retinal Image. , 1897 .