Stress recovery of laminated non-prismatic beams under layerwise traction and body forces

[1]  P. Weaver,et al.  Exact analytical solution for static deflection of Timoshenko composite beams on two-parameter elastic foundations , 2022, Thin-Walled Structures.

[2]  P. Weaver,et al.  Analytical plane-stress recovery of non-prismatic beams under partial cross-sectional loads and surface forces , 2022, Engineering Structures.

[3]  P. Weaver,et al.  Analytical Solution for Arbitrary Large Deflection of Geometrically Exact Beams using the Homotopy Analysis Method , 2021, Applied Mathematical Modelling.

[4]  P. Weaver,et al.  Closed form solutions for an anisotropic composite beam on a two-parameter elastic foundation , 2021, European Journal of Mechanics - A/Solids.

[5]  V. Pandurangan,et al.  Timoshenko beam formulation for in-plane behaviour of tapered monosymmetric I-beams: Analytical solution and exact stiffness matrix , 2021 .

[6]  P. Weaver,et al.  Stress analysis of generally asymmetric non-prismatic beams subject to arbitrary loads , 2021 .

[7]  T. Q. Bui,et al.  An efficient isogeometric beam formulation for analysis of 2D non-prismatic beams , 2021 .

[8]  P. Weaver,et al.  Closed-form solutions for the coupled deflection of anisotropic Euler–Bernoulli composite beams with arbitrary boundary conditions , 2021 .

[9]  Man Zhou,et al.  Unified calculation formula for predicting the shear stresses in prismatic and non-prismatic beams with corrugated steel webs , 2021 .

[10]  P. Weaver,et al.  Variable stiffness composite beams subject to non-uniformly distributed loads: An analytical solution , 2021 .

[11]  V. Pandurangan,et al.  Shear stress distribution in tapered I-beams: Analytical expression and finite element validation , 2020 .

[12]  P. Weaver,et al.  A semi-analytical approach based on the variational iteration method for static analysis of composite beams , 2020 .

[13]  Cong Zhou,et al.  Modified bar simulation method for shear lag analysis of non-prismatic composite box girders with corrugated steel webs , 2020 .

[14]  D. Peeters,et al.  In-line variable spreading of carbon fibre/thermoplastic pre-preg tapes for application in automatic tape placement , 2020 .

[15]  Ferdinando Auricchio,et al.  Structural analysis of non-prismatic beams: Critical issues, accurate stress recovery, and analytical definition of the Finite Element (FE) stiffness matrix , 2020 .

[16]  P. Bertolini,et al.  Analytical solution of the stresses in doubly tapered box girders , 2020 .

[17]  P. Weaver,et al.  Analytical solution for the fully coupled static response of variable stiffness composite beams , 2020 .

[18]  Man Zhou,et al.  Distribution and Properties of Shear Stress in Elastic Beams with Variable Cross Section: Theoretical Analysis and Finite Element Modelling , 2020 .

[19]  P. Weaver,et al.  Static deflection of fully coupled composite Timoshenko beams: An exact analytical solution , 2020 .

[20]  P. Weaver,et al.  Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation , 2019 .

[21]  Luca Taglialegne,et al.  Analytical Study of Stress Fields in Wind Turbine Blades , 2019 .

[22]  Martin Alexander Eder,et al.  Stresses in constant tapered beams with thin-walled rectangular and circular cross sections , 2019, Thin-Walled Structures.

[23]  F. Auricchio,et al.  Modeling the non-trivial behavior of anisotropic beams: A simple Timoshenko beam with enhanced stress recovery and constitutive relations , 2019, Composite Structures.

[24]  Rui Bai,et al.  Finite-element implementation for nonlinear static and dynamic frame analysis of tapered members , 2018, Engineering Structures.

[25]  Ferdinando Auricchio,et al.  Planar Timoshenko-like model for multilayer non-prismatic beams , 2018 .

[26]  Josef Füssl,et al.  Stress recovery from one dimensional models for tapered bi-symmetric thin-walled I beams: Deficiencies in modern engineering tools and procedures , 2017 .

[27]  Alessandro Reali,et al.  Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation , 2017, Comput. Math. Appl..

[28]  P. Jeyaraj,et al.  Structural optimization of rotating tapered laminated thick composite plates with ply drop-offs , 2017 .

[29]  Ferdinando Auricchio,et al.  Serviceability Analysis of Non-Prismatic Timber Beams: Derivation and Validation of New and Effective Straightforward Formulas , 2017 .

[30]  Paul M. Weaver,et al.  Simplified analytical model for tapered sandwich beams using variable stiffness materials , 2017 .

[31]  Omer W. Blodgett,et al.  Design of Welded Structures , 2016 .

[32]  Josef Eberhardsteiner,et al.  Non-prismatic beams: A simple and effective Timoshenko-like model , 2016 .

[33]  Man Zhou,et al.  Shear Stress Calculation and Distribution in Variable Cross Sections of Box Girders with Corrugated Steel Webs , 2016 .

[34]  Nicholas S. Trahair,et al.  In-plane behaviour of web-tapered beams , 2016 .

[35]  Giulio Alfano,et al.  Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger–Reissner principle , 2015 .

[36]  Ferdinando Auricchio,et al.  The dimensional reduction approach for 2D non-prismatic beam modelling: A solution based on Hellinger–Reissner principle , 2015 .

[37]  Paul M. Weaver,et al.  Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells , 2015 .

[38]  D. Hodges,et al.  Asymptotic Approach to Oblique Cross-Sectional Analysis of Beams , 2013 .

[39]  Liping Liu THEORY OF ELASTICITY , 2012 .

[40]  Dewey H. Hodges,et al.  Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam , 2010 .

[41]  Pedro Gonzaga,et al.  Structural analysis of a curved beam element defined in global coordinates , 2008 .

[42]  Dewey H. Hodges,et al.  The Effect of Taper on Section Constants for In-Plane Deformation of an Isotropic Strip , 2008 .

[43]  Ranjan Ganguli,et al.  Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements , 2007 .

[44]  J. Bareisis Stiffness and Strength of Multilayer Beams , 2006 .

[45]  R. P. Johnson,et al.  General rules and rules for buildings , 2004 .

[46]  Shiuh-Chuan Her,et al.  Stress analysis of ply drop-off in composite structures , 2002 .

[47]  Abhijit Mukherjee,et al.  Design guidelines for ply drop-off in laminated composite structures , 2001 .

[48]  Abhijit Mukherjee,et al.  A ply drop-off element for analysis of tapered laminated composites , 1997 .

[49]  D. Zenkert,et al.  Handbook of Sandwich Construction , 1997 .

[50]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[51]  F. Romano,et al.  Deflections of Timoshenko beam with varying cross-section , 1996 .

[52]  Loc Vu-Quoc,et al.  Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations , 1992 .

[53]  Raymond Ian Gilbert,et al.  Design of Prestressed Concrete , 1990 .

[54]  Dewey H. Hodges,et al.  Review of composite rotor blade modeling , 1990 .

[55]  James H. Starnes,et al.  Effect of dropped plies on the strength of graphite-epoxy laminates , 1987 .

[56]  Otto T. Bruhns,et al.  Advanced Mechanics of Solids , 1982 .

[57]  N. J. Pagano,et al.  Stress fields in composite laminates , 1978 .

[58]  J. L. Krahula Shear formula for beams of variable cross section , 1975 .

[59]  G. C. Everstine,et al.  Stress channelling in transversely isotropic elastic composites , 1971 .

[60]  Bruno A. Boley,et al.  On the Accuracy of the Bernoulli-Euler Theory for Beams of Variable Section , 1963 .

[61]  Friedrich Bleich,et al.  Stahlhochbauten : ihre Theorie, Berechnung und bauliche Gestaltung , 1932 .

[62]  S. Carothers XXVI.—Plane Strain in a Wedge, with Applications to Masonry Dams. , 1914 .

[63]  J. Michell The Stress in an Æolotrophic Elastic Solid with an Infinite Plane Boundary , 1900 .

[64]  Jourafsky Remarques sur la résistance d'un corps prismatique et d'une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur , 1855 .