Geometric modeling and representation based on sweep mathematical morphology

We propose a framework for geometric modeling and representation by sweep mathematical morphology, which is based on set-theoretic concept together with geometric sweep. We use a new class of morphological operations that allows one to select varying shapes and orientations of structuring elements during the sweeping process. The sweep dilation/erosion provides a natural representation of sweep motion in manufacturing processes, and the sweep opening/closing provides variant degrees of smoothing in image filtering and edge linking. A set of grammatical rules that govern the generation of objects belonging to the same group can be defined. Earley's parser serves in the screening process to determine whether a pattern is a part of the language. Sweep mathematical morphology is demonstrated as an intuitive and efficient tool for geometric modeling and representation.

[1]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[2]  Aristides A. G. Requicha,et al.  Representation of Tolerances in Solid Modeling: Issues and Alternative Approaches , 1984 .

[3]  Warren A. Hunt,et al.  The Role of Solid Modelling in Machining-Process Modelling and NC Verification , 1981 .

[4]  Frank Y. Shih,et al.  Threshold Decomposition of Gray-Scale Morphology into Binary Morphology , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  James U. Korein,et al.  A geometric investigation of reach , 1985 .

[6]  Anil Kaul Computing Minkowski sums , 1993 .

[7]  Yukinori Kakazu,et al.  RESEARCH ON 3-D GEOMETRIC MODELING BY SWEEP PRIMITIVES , 1982 .

[8]  Frank Y. Shih,et al.  General sweep mathematical morphology , 2003, Pattern Recognit..

[9]  thomas huang Picture Bandwidth Compression , 1972 .

[10]  Jarek Rossignac CSG-BRep duality and compression , 2002, SMA '02.

[11]  Ralph R. Martin,et al.  Sweeping of three-dimensional objects , 1990, Comput. Aided Des..

[12]  Vadim Shapiro,et al.  Boundary representation deformation in parametric solid modeling , 1998, TOGS.

[13]  Aristides A. G. Requicha,et al.  Offsetting operations in solid modelling , 1986, Comput. Aided Geom. Des..

[14]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[15]  Frank Y. Shih Object representation and recognition using mathematical morphology model , 1991, J. Syst. Integr..

[16]  M. Carter Computer graphics: Principles and practice , 1997 .

[17]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Yukinori Kakazu,et al.  A generalized sweeping method for SGC modeling , 1991, SMA '91.

[19]  K. K. Wang,et al.  Geometric Modeling for Swept Volume of Moving Solids , 1986, IEEE Computer Graphics and Applications.

[20]  S. H. Park,et al.  Geometric Representation of Translational Swept Volumes and its Applications , 1986 .

[21]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[22]  Pijush K. Ghosh,et al.  A mathematical model for shape description using Minkowski operators , 1988, Comput. Vis. Graph. Image Process..

[23]  Requicha,et al.  Solid Modeling: A Historical Summary and Contemporary Assessment , 1982, IEEE Computer Graphics and Applications.

[24]  H. Voelcker,et al.  Solid modeling: current status and research directions , 1983, IEEE Computer Graphics and Applications.

[25]  John W. Boyse,et al.  Solid Modeling by Computers , 1984, Springer US.