A novel approach to a Brillouin–LIDAR for remote sensing of the ocean temperature

Ocean temperature profiles are of great importance in oceanography. For instance, an efficient remote sensing measurement technique of these profiles will facilitate climate studies and improvements in weather forecast. In this paper we describe developments towards a practical implementation of a Brillouin–LIDAR system capable of measuring temperature profiles in the ocean. In particular, we focus on our recent work on fiber amplifiers and a receiver unit based on a Faraday anomalous dispersion optical filter.

[1]  D. Hanna,et al.  Ytterbium-doped fiber amplifiers , 1997 .

[2]  S W Henderson,et al.  Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. , 1986, Optics letters.

[3]  T. Walther,et al.  Temperature dependence of the Brillouin linewidth in water , 2002 .

[4]  A. Weis,et al.  Magneto-optical rotation near the caesium D2 line(Macaluso-Corbino effect) in intermediate fields: I. Linear regime , 1987 .

[5]  D. Richardson,et al.  Large Mode Area Fibers for High Power Applications , 1999 .

[6]  P. Schmidt I. I. Sobelman: Atomic Spectra and Radiative Transitions. Springer Series in Chemical Physics 1, Springer‐Verlag, Berlin 1979. 306 Seiten, Preis: DM 59,‐. , 1981 .

[7]  P. Sandars,et al.  The Faraday effect and magnetic circular dichroism in atomic bismuth , 1980 .

[8]  Ronald D. Esman,et al.  Single-polarisation fibre amplifier , 1992 .

[9]  Bruce W. Shore,et al.  The Theory of Coherent Atomic Excitation , 1991 .

[10]  X Li,et al.  Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments. , 1991, Applied optics.

[11]  D. Hanna,et al.  Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 /spl mu/m region , 1995 .

[12]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[13]  Generation of near-Fourier-transform-limited high-energy pulses in a chain of fiber-bulk amplifiers. , 2001, Optics letters.

[14]  M. Samimy,et al.  Details of a molecular filter-based velocimetry technique , 1994 .

[15]  Edward S. Fry,et al.  Laboratory development of a lidar for measurement of sound velocity in the ocean using Brillouin scattering , 1997, Other Conferences.

[16]  B. Gentry,et al.  Edge technique: theory and application to the lidar measurement of atmospheric wind. , 1992, Applied optics.

[17]  Michel J. F. Digonnet,et al.  Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded , 2001 .

[18]  L. Goldberg,et al.  Single-mode operation of a coiled multimode fiber amplifier. , 2000, Optics letters.

[19]  T. M. Shay,et al.  Theoretical model for a Faraday anomalous dispersion optical filter , 1991 .

[20]  George C. Valley,et al.  Modeling Cladding-Pumped Er/Yb Fiber Amplifiers , 2001 .

[21]  L. Zenteno,et al.  High-power double-clad fiber lasers , 1993 .

[22]  Edward S. Fry,et al.  Aircraft laser sensing of sound velocity in water: Brillouin scattering , 1990 .

[23]  E. Fry,et al.  Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. , 1997, Applied optics.

[24]  J. L. Guagliardo,et al.  Range‐resolved Brillouin scattering using a pulsed laser , 1980 .

[25]  S. A. Lee,et al.  High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters. , 1983, Applied optics.

[26]  Amos A. Hardy,et al.  Signal amplification in strongly pumped fiber amplifiers , 1997 .

[27]  J. Limpert,et al.  100-W average-power, high-energy nanosecond fiber amplifier , 2002 .

[28]  P. Yeh Dispersive magnetooptic filters. , 1982, Applied optics.

[29]  N. Gisin,et al.  Interferometer using a 3 x 3 coupler and Faraday mirrors. , 1995, Optics letters.