Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS) and stages from Envisat radar altimetry. Surface water storage variations over 2003-2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95), the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73) after removing seasonal effects. Mean annual variations in surface water volume represented similar to 170 km(3), contributing to similar to 45% of the Gravity Recovery and Climate Experiment (GRACE)-derived total water storage variations and representing similar to 13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

[1]  Catherine Prigent,et al.  Wetland dynamics using a suite of satellite observations: A case study of application and evaluation for the Indian Subcontinent , 2006 .

[2]  F. Aires,et al.  Changes in land surface water dynamics since the 1990s and relation to population pressure , 2012 .

[3]  Filipe Aires,et al.  Land Surface Microwave Emissivities over the Globe for a Decade , 2006 .

[4]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[5]  Frédéric Frappart,et al.  Validation of GRACE-derived terrestrial water storage from a regional approach over South America , 2013 .

[6]  C. Birkett,et al.  Contribution of the TOPEX NASA Radar Altimeter to the global monitoring of large rivers and wetlands , 1998 .

[7]  M H Rose,et al.  Risk and vulnerability: A case for differentiation , 1983, ANS. Advances in nursing science.

[8]  Frédérique Seyler,et al.  Low‐water maps of the groundwater table in the central Amazon by satellite altimetry , 2014 .

[9]  A. Cazenave,et al.  Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels , 2005 .

[10]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[11]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[12]  S. Hamilton,et al.  Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos (Bolivia) and the Llanos del Orinoco (Venezuela and Colombia) , 2004 .

[13]  Patricio Aceituno Gutiérrez On the Functioning of the Southern Oscillation in the South American Sector. Part II: Upper-Air Circulation , 1989 .

[14]  John M. Melack,et al.  An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River , 1997 .

[15]  M. Acreman,et al.  The role of wetlands in the hydrological cycle , 2003 .

[16]  Alenia Aerospazio,et al.  ENVISAT RA-2 ADVANCED RADAR ALTIMETER : INSTRUMENT DESIGN AND PRE-LAUNCH PERFORMANCE ASSESSMENT REVIEW , 1999 .

[17]  C. Birkett,et al.  The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes , 1995 .

[18]  F. Aires,et al.  Surface freshwater storage and variability in the Amazon basin from multi‐satellite observations, 1993–2007 , 2013 .

[19]  W. Junk The flood pulse concept in river-floodplain systems , 1989 .

[20]  Juan Diego León,et al.  Estimación de curvas de gasto en estaciones virtuales Envisat sobre el cauce principal del río Orinoco , 2011 .

[21]  A. Cazenave,et al.  Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin , 2006 .

[22]  F. Frappart,et al.  Combining high-resolution satellite images and altimetry to estimate the volume of small lakes , 2013 .

[23]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[24]  F. Aires,et al.  Global inundation dynamics inferred from multiple satellite observations, 1993–2000 , 2007 .

[25]  Organisation for Economic Cooperation and Development,et al.  Organisation for economic cooperation and development , 1998 .

[26]  Frédéric Frappart,et al.  Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin , 2013 .

[27]  Laurence C. Smith,et al.  Amazon floodplain water level changes measured with interferometric SIR-C radar , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  P. Aceituno,et al.  On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate , 1988 .

[29]  Stefan Fruehauf,et al.  The Central Amazon Floodplain Ecology Of A Pulsing System , 2016 .

[30]  Javier Tomasella,et al.  Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains , 2011 .

[31]  B. Forsberg,et al.  Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective , 1995 .

[32]  S. Calmant,et al.  Large‐scale hydrologic and hydrodynamic modeling of the Amazon River basin , 2013 .

[33]  Bruce R. Forsberg,et al.  Sources and routing of the Amazon River Flood Wave , 1989 .

[34]  J. B. Miller,et al.  Contribution of anthropogenic and natural sources to atmospheric methane variability , 2006, Nature.

[35]  S. Calmant,et al.  Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions , 2010 .

[36]  E. Maltby,et al.  Wetland management goals: wise use and conservation , 1991 .

[37]  Luc Bourrel,et al.  The dynamics of floods in the Bolivian Amazon Basin , 2009 .

[38]  K. Shadan,et al.  Available online: , 2012 .

[39]  N. Arnell,et al.  Freshwater resources and their management , 2007 .

[40]  G. Huffman,et al.  The TRMM Multi-Satellite Precipitation Analysis (TMPA) , 2010 .

[41]  John M. Melack,et al.  Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing , 1996 .

[42]  F. Aires,et al.  Interannual variability of surface water extent at the global scale, 1993–2004 , 2010 .

[43]  William M. Lewis,et al.  Concentration and transport of dissolved and suspended substances in the Orinoco River , 1989 .

[44]  Steve Kempler Goddard Earth Science Data and Information Center (GES DISC) , 2016 .

[45]  R. Khanbilvardi,et al.  Diagnosing Water Variations Within The Amazon Basin Using Satellite Data , 2011 .

[46]  C. Prigent,et al.  Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin , 2008 .

[47]  Filipe Aires,et al.  Remote sensing of global wetland dynamics with multiple satellite data sets , 2001 .

[48]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[49]  L. Hess,et al.  Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 , 2002, Nature.

[50]  Catherine Prigent,et al.  An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales , 2010 .

[51]  Frédéric Frappart,et al.  Estimating surface soil moisture over Sahel using ENVISAT radar altimetry , 2012 .

[52]  Frédérique Seyler,et al.  Water level dynamics of Amazon wetlands at the watershed scale by satellite altimetry , 2012 .

[53]  C. Nobre,et al.  The Drought of Amazonia in 2005 , 2008 .

[54]  S. K. Hamilton,et al.  Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela , 1990, Archiv für Hydrobiologie.

[55]  F. Frappart,et al.  Constrained Regional Recovery of Continental Water Mass Time-variations from GRACE-based Geopotential Anomalies over South America , 2010, Surveys in Geophysics.

[56]  W. Junk,et al.  The Central Amazon Floodplain: Ecology of a Pulsing System , 2010 .

[57]  Moustafa T. Chahine,et al.  The hydrological cycle and its influence on climate , 1992, Nature.

[58]  Ajit Subramaniam,et al.  Causes and impacts of the 2005 Amazon drought , 2008 .

[59]  S. Hamilton,et al.  Comparison of inundation patterns among major South American floodplains , 2002 .

[60]  S. Gratton,et al.  GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology , 2011 .

[61]  Frédéric Frappart,et al.  WATER VOLUME CHANGE IN THE LOWER MEKONG FROM SATELLITE ALTIMETRY AND IMAGERY DATA , 2006 .

[62]  Frédéric Frappart,et al.  Time variations of land water storage from an inversion of 2 years of GRACE geoids , 2005 .

[63]  Frédéric Frappart,et al.  Variations of surface water extent and water storage in large river basins: A comparison of different global data sources , 2008 .

[64]  H. Douville,et al.  A new river flooding scheme for global climate applications: Off‐line evaluation over South America , 2008 .

[65]  U. Schneider,et al.  Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information , 1995 .

[66]  C. Prigent,et al.  Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought , 2012 .

[67]  Frédéric Frappart,et al.  Estimating surface soil moisture over sahel using envisat radar altimetry , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[68]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .