Renormalization Group (RG) in Turbulence: Historical and Comparative Perspective

The terms renormalization and renormalization group are explained by reference to various physical systems. The extension of renormalization group to turbulence is then discussed; first as a comprehensive review and second concentrating on the technical details of a few selected approaches. We conclude with a discussion of the relevance and application of renormalization group to turbulence modelling.

[1]  M. Nelkin Turbulence, critical fluctuations, and intermittency , 1974 .

[2]  S. Lam On RNG Theory and the Decay Law of Homogeneous Isotropic Turbulence , 1994 .

[3]  Conditional averaging procedure for the elimination of the small-scale modes from incompressible fluid turbulence at high Reynolds numbers. , 1990, Physical review letters.

[4]  D. Leslie,et al.  The application of turbulence theory to the formulation of subgrid modelling procedures , 1979, Journal of Fluid Mechanics.

[5]  Ye Zhou Interacting scales and energy transfer in isotropic turbulence , 1993 .

[6]  P. Sulem,et al.  Fully developed turbulence and statistical mechanics , 1978 .

[7]  On the RNG Theory of Turbulence , 1992 .

[8]  A. Petermann,et al.  La normalisation des constantes dans la théorie des quanta , 1952 .

[9]  C. G. Speziale,et al.  An Overview of RNG Methods in Turbulence Modeling: Panel Discussion Summary , 1994 .

[10]  W. Mccomb,et al.  The physics of fluid turbulence. , 1990 .

[11]  G. Vahala,et al.  Development of a recursion RNG-based turbulence model , 1993 .

[12]  Xiao-Hong Wang,et al.  One modification to the Yakhot-Orszag calculation in the renormalization-group theory of turbulence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  H. Rose Eddy diffusivity, eddy noise and subgrid-scale modelling , 1977, Journal of Fluid Mechanics.

[14]  Marcel Lesieur,et al.  Large‐eddy simulation of passive scalar diffusion in isotropic turbulence , 1989 .

[15]  J. Chasnov Simulation of the Kolmogorov inertial subrange using an improved subgrid model , 1991 .

[16]  David R. Nelson,et al.  Large-distance and long-time properties of a randomly stirred fluid , 1977 .

[17]  Riley,et al.  Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. , 1987, Physical review letters.

[18]  Colored stochastic noises in the renormalization group approach of turbulence , 1990 .

[19]  Watt,et al.  Two-field theory of incompressible-fluid turbulence. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[21]  Robert H. Kraichnan,et al.  An interpretation of the Yakhot–Orszag turbulence theory , 1987 .

[22]  Charles G. Speziale,et al.  ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .

[23]  E. Teodorovich On the Yakhot—Orszag theory of turbulence , 1994 .

[24]  T. von Karman,et al.  On the Statistical Theory of Turbulence. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Rubinstein The Yakhot-Orszag Theory and Local Interactions , 1994 .

[26]  Robert Rubinstein,et al.  Nonlinear Reynolds stress models and the renormalization group , 1990 .

[27]  Ye Zhou Degrees of locality of energy transfer in the inertial range. [Kolmogoroff notion in turbulence theory] , 1993 .

[28]  W. C. Reynolds,et al.  On the Yakhot-Orszag renormalization group method for deriving turbulence statistics and models , 1992 .

[29]  L. Kadanoff The application of renormalization group techniques to quarks and strings , 1977 .

[30]  M. Lesieur,et al.  Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures , 1981 .

[31]  Parviz Moin,et al.  Progress in large eddy simulation of turbulent flows , 1997 .

[32]  T. Gatski,et al.  On explicit algebraic stress models for complex turbulent flows , 1992, Journal of Fluid Mechanics.

[33]  Leslie M. Smith,et al.  The renormalization group, the ɛ-expansion and derivation of turbulence models , 1992 .

[34]  Steven A. Orszag,et al.  Analytical theories of turbulence and the ε expansion , 1987 .

[35]  Theory of fully developed hydrodynamic turbulent flow: Applications of renormalization-group methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[37]  David R. Nelson,et al.  Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid , 1976 .

[38]  Watt,et al.  Conditional-averaging procedure for problems with mode-mode coupling. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  R. Kraichnan Hydrodynamic turbulence and the renormalization group , 1982 .

[40]  Vahala,et al.  Renormalized eddy viscosity and Kolmogorov's constant in forced Navier-Stokes turbulence. , 1989, Physical review. A, General physics.

[41]  Akira Yoshizawa,et al.  Statistical analysis of the deviation of the Reynolds stress from its eddy‐viscosity representation , 1984 .

[42]  G. Eyink The renormalization group method in statistical hydrodynamics , 1994 .

[43]  S. Woodruff Dyson equation analysis of inertial-range turbulence , 1992 .

[44]  Uriel Frisch,et al.  Remarks on the renormalization group in statistical fluid dynamics , 1983 .

[45]  C. Leith,et al.  Developments in the theory of turbulence , 1973 .

[46]  Vahala,et al.  Renormalization-group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Vahala,et al.  Local interactions in renormalization methods for Navier-Stokes turbulence. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[48]  C. G. Speziale On nonlinear K-l and K-ε models of turbulence , 1987, Journal of Fluid Mechanics.

[49]  G. Vahala,et al.  Renormalization-group theory for the eddy viscosity in subgrid modeling. , 1988, Physical review. A, General physics.

[50]  Shiyi Chen,et al.  Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field , 1996, Journal of Fluid Mechanics.

[51]  S. Woodruff A similarity solution for the Direct Interaction Approximation and its relationship to renormalization‐group analyses of turbulence , 1994 .

[52]  Calculation of turbulent viscosity , 1987 .

[53]  Bambi Hu,et al.  Introduction to real-space renormalization-group methods in critical and chaotic phenomena , 1982 .

[54]  F. Magill The Nobel Prize winners : physics , 1989 .

[55]  Paul A. Durbin,et al.  Local Anisotropy in Strained Turbulence at High Reynolds Numbers , 1991 .

[56]  G. Vahala,et al.  Reformulation of recursive-renormalization-group-based subgrid modeling of turbulence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  W. C. Reynolds,et al.  The potential and limitations of direct and large eddy simulations , 1990 .

[58]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[59]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[60]  Shang‐keng Ma,et al.  Critical dynamics of ferromagnets in 6 − ε dimensions: General discussion and detailed calculation , 1975 .

[61]  Alex G. Watt Study of isotropic turbulence , 1991 .

[62]  C. G. Speziale Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence , 1985, Journal of Fluid Mechanics.

[63]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[64]  Shiyi Chen,et al.  On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence , 1993 .

[65]  Scale disparity and spectral transfer in anisotropic numerical turbulence. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  P. Yeung,et al.  On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence , 1997 .

[67]  RNG for CFD? An Assessment of Current RNG Theories of Turbulence , 1994 .

[68]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[69]  Uriel Frisch,et al.  d-dimensional turbulence , 1978 .

[70]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[71]  Paul C. Martin,et al.  Energy spectra of certain randomly-stirred fluids , 1979 .