A Robust Symbol Timing Synchronization Scheme for OFDM Systems Applied in a Vehicular Network

This paper presents a novel timing synchronization scheme for orthogonal frequency-division multiplexing communication systems by leveraging the phase shift caused by the timing error and the power difference between subcarriers. The proposed scheme is applied in the physical layer of vehicular ad hoc networks using the IEEE 802.11p standard. The proposed work joints three different estimators to present a robust synchronizer. The results demonstrate that the proposed estimators greatly improve the performance of the communication system and outperform other approaches in terms of the mean square error and the bit error rate. The estimators can either work as totally blind or data-aided using the preamble field of the IEEE 802.11p.

[1]  Daesik Hong,et al.  A Robust Timing Recovery Algorithm for OFDM Systems , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[2]  Hui Zhang,et al.  Synchronization method based on a new constant envelop preamble for OFDM systems , 2005, IEEE Transactions on Broadcasting.

[3]  Luca Delgrossi,et al.  IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[4]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[5]  Sijing Zhang,et al.  Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward , 2014, 2014 20th International Conference on Automation and Computing.

[6]  Barry G. Evans,et al.  Robust time-domain timing and frequency synchronization for OFDM systems , 2009, IEEE Transactions on Consumer Electronics.

[7]  Ramjee Prasad,et al.  OFDM for Wireless Multimedia Communications , 1999 .

[8]  Lenan Wu,et al.  Single frequency network based mobile tracking in NLOS environments , 2014, Phys. Commun..

[9]  Ramesh Raskar,et al.  Resolving Multi-path Interference in Time-of-Flight Imaging via Modulation Frequency Diversity and Sparse Regularization , 2014, Optics letters.

[10]  Khaled Ben Letaief,et al.  A robust timing and frequency synchronization for OFDM systems , 2003, IEEE Trans. Wirel. Commun..

[11]  Janne Riihijarvi,et al.  Performance evaluation of IEEE 1609 WAVE and IEEE 802.11p for vehicular communications , 2010, 2010 Second International Conference on Ubiquitous and Future Networks (ICUFN).

[12]  Antonella Molinaro,et al.  Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs , 2012, Ad Hoc Networks.

[13]  Tjeng Thiang Tjhung,et al.  A New Blind Joint Timing and Frequency Offset Estimator for OFDM Systems Over Multipath Fading Channels , 2008, IEEE Transactions on Vehicular Technology.

[14]  Stephan Eichler,et al.  Performance Evaluation of the IEEE 802.11p WAVE Communication Standard , 2007, 2007 IEEE 66th Vehicular Technology Conference.

[15]  Wu Lenan,et al.  The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges , 2014 .

[16]  Wen-Long Chin Channel length assisted symbol synchronization for OFDM systems in multipath fading channels , 2011, EURASIP J. Wirel. Commun. Netw..

[17]  Yunxin Li,et al.  An Overview of the DSRC/WAVE Technology , 2010, QSHINE.

[18]  A. Nandi Blind estimation using higher-order statistics , 1999 .

[19]  Georgios B. Giannakis,et al.  Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels , 1998, Proc. IEEE.

[20]  Lenan Wu,et al.  A Secret Key Extraction Technique Applied in Vehicular Networks , 2014, 2014 IEEE 17th International Conference on Computational Science and Engineering.

[21]  Georgios B. Giannakis,et al.  Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems , 2005, IEEE Transactions on Communications.

[22]  John Terry,et al.  OFDM Wireless LANs: A Theoretical and Practical Guide , 2001 .

[23]  Lenan Wu,et al.  On channel estimation in vehicular networks , 2017, IET Commun..

[24]  Geoffrey Ye Li,et al.  OFDM and Its Wireless Applications: A Survey , 2009, IEEE Transactions on Vehicular Technology.

[25]  P. B. Borole,et al.  Implementation of OFDM System using IFFT and FFT , 2013 .

[26]  Bob O'Hara,et al.  The IEEE 802.11 Handbook: A Designer's Companion , 1999 .

[27]  Cyril Leung,et al.  OFDM/FM frame synchronization for mobile radio data communication , 1993 .

[28]  Per Ola Börjesson,et al.  ML estimation of time and frequency offset in OFDM systems , 1997, IEEE Trans. Signal Process..

[29]  Krishnamurthy Giridhar,et al.  Robust timing synchronization for OFDM based wireless LAN system , 2003, TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region.

[30]  Jingwen Zhu,et al.  Joint timing and frequency synchronization based on weighted CAZAC sequences for reduced-guard-interval CO-OFDM systems. , 2015, Optics express.

[31]  Arnaud Doucet,et al.  Blind SOS subspace channel estimation and equalization techniques exploiting spatial diversity in OFDM systems , 2004, Digit. Signal Process..

[32]  S. Weinstein,et al.  Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform , 1971 .

[33]  Zhiqiang Liu,et al.  Minimum interference blind time-offset estimation for OFDM systems , 2006, IEEE Transactions on Wireless Communications.

[34]  Hannes Hartenstein,et al.  A tutorial survey on vehicular ad hoc networks , 2008, IEEE Communications Magazine.

[35]  Wen-Long Chin,et al.  A Blind Synchronizer for OFDM Systems Based on SINR Maximization in Multipath Fading Channels , 2009, IEEE Transactions on Vehicular Technology.

[36]  Yasushi Takeda,et al.  Velocity profile measurement by ultrasound Doppler shift method , 1986 .