Counterexamples to the Complex Polytope Extremality Conjecture

We disprove a recent conjecture of Guglielmi, Wirth, and Zennaro, stating that any nondefective set of matrices having the finiteness property has an extremal complex polytope norm. We give two counterexamples that show that the conjecture is false even if the set of matrices is supposed to admit the positive orthant as an invariant cone, or even if the set of matrices is assumed to be irreducible.

[1]  V. Protasov,et al.  Extremal Lp-norms of linear operators and self-similar functions , 2008 .

[2]  V. Protasov The generalized joint spectral radius. A geometric approach , 1997 .

[3]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[4]  S. Miani,et al.  Complex polytopic control Lyapunov functions , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[5]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[6]  Nicola Guglielmi,et al.  An algorithm for finding extremal polytope norms of matrix families , 2008 .

[7]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[8]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[9]  V. Protasov Asymptotic behaviour of the partition function , 2000 .

[10]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[11]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[12]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[13]  Vincent D. Blondel,et al.  Undecidable Problems for Probabilistic Automata of Fixed Dimension , 2003, Theory of Computing Systems.

[14]  V. Kozyakin Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .

[15]  Vincent D. Blondel,et al.  Efficient algorithms for deciding the type of growth of products of integer matrices , 2006, ArXiv.

[16]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[17]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[18]  Vincent D. Blondel,et al.  On the finiteness property for rational matrices , 2007 .